isovector spin excitation gamow teller transition
play

( ) Isovector & Spin excitation Gamow-Teller transition - PDF document

Nuclear Physics Revealed by the study of Gamow-Teller excitations Yoshitaka FUJITA Yoshitaka FUJITA RCNP & Dept. Phys., Osaka Univ. RCNP & Dept. Phys., Osaka Univ.


  1. Nuclear Physics Revealed by the study of Gamow-Teller excitations ガモフ・テラー遷移の研究から見える原子核物理 Yoshitaka FUJITA Yoshitaka FUJITA RCNP & Dept. Phys., Osaka Univ. RCNP & Dept. Phys., Osaka Univ. つくば不安定核セミナー January 21, 2016 Department of Physics, Jyvaskyla, August, 2014 GT : Important weak response, simple  operator Neptune = Neptune driving Waves weak interaction Powerful Waves = strong interaction) 1

  2. Vibration Modes in Nuclei (Schematic) Gamow- Teller mode (  ) Isovector & Spin excitation Gamow-Teller transition s Mediated by  operator  S = -1, 0, +1 and  T = -1, 0, +1 (  L = 0, no change in radial w.f. )  no change in spatial w.f. Accordingly, transitions among j > and j < configurations j >  j > , j <  j < , j >  j < example f 7/2  f 7/2 , f 5/2  f 5/2 , f 7/2  f 5/2 Note that Spin and Isospin are unique quantum numbers in atomic nuclei !  GT transitions are sensitive to Nuclear Structure !  GT transitions in each nucleus are UNIQUE ! 2

  3. **Basic common understanding of  -decay and Charge-Exchange reaction  decays : Absolute B (GT) values, but usually the study is limited to low-lying states (p,n), ( 3 He,t) reaction at 0 o : Relative B (GT) values, but Highly Excited States ** Both are important for the study of GT transitions!  -decay & CE Nuclear Reaction  2 1   -decay GT tra. rate = ( GT ) f B t K 1 / 2 B (GT) : reduced GT transition strength  (matrix element) 2 = |<f|  |i>| 2 *Nuclear (CE) reaction rate (cross-section) = reaction mechanism x operator =(matrix element) 2 x structure 3

  4.  -decay & Nuclear Reaction  2 1   -decay GT tra. rate = ( GT ) f B t K 1 / 2 B (GT) : reduced GT transition strength  (matrix element) 2 = |<f|  |i>| 2 *Nuclear (CE) reaction rate (cross-section) = reaction mechanism x operator =(matrix element) 2 x structure *At intermediate energies (100 < E in < 500 MeV) d  /d  ( q =0) : proportional to B (GT) Nucleon-Nucleon Int. : E in dependence at q =0 Strength central-type interactions Simple one-step reaction mechanism at intermediate energies ! V  V  V  V  Energy/nucleon Love & Franey PRC 24 (’81) 1073 4

  5. N.-N. Int. :  & Tensor-  q -dependence  T  largest at q =0 ! larger than others ! Love & Franey PRC 24 (’81) 1073  -decay & Nuclear Reaction  2 1   -decay GT tra. rate = ( GT ) f B t K 1 / 2 B (GT) : reduced GT transition strength  (matrix element) 2 = |<f|  |i>| 2 *Nuclear (CE) reaction rate (cross-section) = reaction mechanism x operator =(matrix element) 2 x structure *At intermediate energies (100 < E in < 500 MeV) d  /d  ( q =0) : proportional to B (GT) 5

  6. Simulation of  -decay spectrum f-factor (normalied) 5000 1.2 Counts + 50 Cr( 3 He,t) 50 Mn g.s.(IAS),0 + 1 0.651,1 4000 E=140 MeV/nucleon o 0.8 θ =0 3000 + + 2.441,1 3.392,1 Q EC =8.152 MeV 0.6 2000 0.4 1000 0.2 0 0 0 1 2 3 4 5 6 5 0 Mn (MeV) E x in 5000 β intensity (relative) + β -decay: 50 Fe --> 50 Mn g.s.(IAS),0 + 0.651,1 4000 *expected spectrum assuming isospin symmetry 3000 + + 2.441,1 3.392,1 Q EC =8.152 MeV 2000 1000 0 0 1 2 3 4 5 6 5 0 Mn (MeV) x in E Y.F, B.R, W.G, PPNP, 66 (2011) 549 ( p , n ) spectra for Fe and Ni Isotopes T=1 Fermi GTR GTR Fermi GTR GTR Fermi GTR GTR Rapaport & Sugerbaker 6

  7. Comparison of (p, n) and ( 3 He,t) 0 o spectra 58 Ni( p , n ) 58 Cu Counts E p = 160 MeV IAS J. Rapaport et al. 58 Ni( 3 He, t ) 58 Cu NPA (‘83) E = 140 MeV/u GTR Y. Fujita et al., GT EPJ A 13 (’02) 411. H. Fujita et al., PRC 75 (’07) 034310 0 2 4 6 8 10 12 14 Excitation Energy (MeV) Comparison of (p, n) and ( 3 He,t) 0 o spectra 58 Ni( p , n ) 58 Cu E p = 160 MeV Counts J. Rapaport et al. 58 Ni( 3 He, t ) 58 Cu NPA (‘83) E = 140 MeV/u GTR Y. Fujita et al., EPJ A 13 (’02) 411. H. Fujita et al., PRC 75 (’07) 034310  High selectivity for GT excitations.   Proportionality: d  /d  B(GT) 0 2 4 6 8 10 12 14 Excitation Energy (MeV) 7

  8.  -decay & Nuclear Reaction  2 1   -decay GT tra. rate = ( GT ) f B t K 1 / 2 B (GT) : reduced GT transition strength Study of Weak Response of Nuclei  (matrix element) 2 by means of *Nuclear (CE) reaction rate (cross-section) Strong Interaction ! = reaction mechanism using  -decay as a reference x operator =(matrix element) 2 x structure A simple reaction mechanism should be achieved ! we have to go to high incoming energy **GT transitions in each nucleus are UNIQUE and INFORMATIVE ! *( 3 He,t): high resolution and sensitivity ! 8

  9. **GT transitions in each nucleus are UNIQUE and INFORMATIVE ! - sd -shell nuclei - Spectra of p -shell Tz=1/2 Nuclei A=7 A=9 A=11 9

  10. T=1/2 Isospin Symmetry Koelner Dom in Germany (157m high) Analogous Structures and Transitions in T=1/2 System Real Energy Space Isospin Symmetry Space (p,n)-type (p,n)-type  -decay  -decay g.s.  -decay  -decay g.s. g.s.  -decay Q EC  -decay Tz=+1/2 Tz=-1/2 (Z,N+1) (Z+1,N) g.s. (stable) Tz=+1/2 Tz=-1/2 (Z,N+1) (Z+1,N) (stable) 10

  11. 9 Be( 3 He,t) 9 B spectrum (at various scales) Relationship: Decay and Width Heisenberg’s Uncertainty Priciple      x p      t E Width    E *if: Decay is Fast, then: Width of a State is Wider ! *if  t =10 -20 sec   E ~100 keV (particle decay)  t =10 -15 sec   E ~ 1 eV (fast  decay) 11

  12. 9 Be( 3 He,t) 9 B spectrum (II) Isospin selection rule prohibits proton decay of T=3/2 state! C. Scholl et al, PRC 84, 014308 (2011) Isospin Selection Rule : in p -decay of 9 B p + 8 Be* 9 B* 1p-1h + p n p n T z : -1/2 + 0 = -1/2 T : 1/2 + 0 (low lying) = 1/2 T : 1/2 + 1 (higher Ex) = 1/2 & 3/2 *T=1 state in 8 Be is only above E x =16.6 MeV Therefore, p -decay of T=3/2 states is forbidden! 12

  13. 9 Be( 3 He,t) 9 B spectrum (III) 14.7 MeV T=3/2 state is very weak! Strength ratio of g.s. & 14.7 MeV 3/2 - states: 140:1 Shell Structure and Cluster Structure Excited state: Shell Model-like T=3/2 9 Li 9 C  -decay T z =3/2 T z =-3/2 neutron: p 3/2 closed g.s.: Cluster-like proton: p 3/2 closed α α n p α α suggestion by 9 Be 9 B Y. Kanada-En’yo T z =1/2 T z =-1/2 13

  14.  -decay and ( 3 He,t) results C. Scholl et al, PRC 84, 014308 (2011) L.Buchmann et al., PRC 63 (2001) 034303. U.C.Bergmann et al., Nucl. Phys. A 692 (2001) 427. 9 Be( 3 He,t) 9 B spectrum (III) Information on: •Excitation Energy •Transition Strength •Decay Width 14.7 MeV T=3/2 state is very weak! Strength ratio of g.s. & 14.7 MeV 3/2 - states: 140:1 14

  15. 7 Li( 3 He,t) 7 Be spectrum 7 Li and 7 Be are Mirror Nuclei ! x 50 If 3 He+  a Compact structure Shell Structure and Cluster Structure Compact (Shell model-like) T=3/2 7 He 7 B T z =3/2 T z =-3/2 proton: s 1/2 closed g.s.: Cluster-like neutron: s 1/2 closed  t T=1/2 α α 7 Li 7 Be T z =1/2 T z =-1/2 15

  16. Spectra of p -shell Mirror Nuclei A=7 A=9 A=11 (p,n) and ( 3 He,t) Spectra on 11 B 11 B(p, n) 11 C E p =200 MeV T.N. Taddeucci et al., PRC 42 (1990) 935 Y. Fujita et al., PRC 70 (2004) 011206(R) 16

  17. GT transitions to J  =3/2 - states: J  allowed Why 3/2 - 3 so weak! Y. Fujita et al., PRC 70  E ~300 keV (2004) 011206(R) Comparison: 11 B( 3 He,t) 11 C 8.105 & 3/2 - Shell Models No-core SM-cal: by Navratil & Ormand Phys. Rev. C 68 (’03)034305 8.105, 3/2 - state is not reproduced ! “quenching” included 17

  18. 11B → 11C: GT transition strengths 11 B(3He,t) 11 C Y. Fujita, et al. PRC 70, 011306(R)(2004). no-core shell-model small B(GT) : missing of 3/2 - 3 in NCSM calculation Shell-model-like and Cluster structures in 12 C E x (MeV)    8 [ Be( 2 ) l 2 ] ,...  0 J 12 C linear-chain like equilateral-triangular 0 + 3 3  clusters develop 3 - 1 3  threshold & 0 + 2 various structures 7.4 MeV appear dilute cluster gas Hoyle state shell model like shell model like ~ 0 + 0 MeV 1 E. Uegaki, et al. Prog. Theor. Phys. 57 , 1262 (1977) M. Kamimura, et al. J. Phys. Soc. Jpn. 44 (1978), 225. A. Tohsaki, et al. Phys. Rev. Lett. 87 , 192501 (2001) by Suhara & En’yo ‘08 Y. Kanada-En’yo, Prog. Theor. Phys. 117 , 655 (2007) etc 18

  19. Coexistence of shell-model and cluster states by Y. Kanada-En’yo PRC 75 (’07) 024302 12 C 11 C ( 11 B) Excited 3  7 Li+  2  + 3 He p 3/2 p 3/2 low-lying sub-shell shell- closure model-like 11 B → 11 C* GT-transition strength by Y. Kanada-En’yo PRC 75 (’07) 024302 Y. Fujita, et al. PRC 70, 011306(R)(2004). no-core shell-model 11 C AMD B(GT) 0.45 0.48 0.71 0.68 0.02 0.57 0.8 exp 0.7 AMD 0.6 Small B(GT) of 3/2 - 3 : well reproduced SM 0.5 0.4 0.3 0.2 0.1 0 2  + 3 He 3/2 - 5/2 - 3 2 19

  20. **Connection between GT and E0 transitions** T=1/2 Isospin Symmetry Koelner Dom in Germany (157m high) 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend