twisted non abelian vortices
play

Twisted non-Abelian vortices rpd Lukcs, in collaboration with Pter - PowerPoint PPT Presentation

Twisted non-Abelian vortices rpd Lukcs, in collaboration with Pter Forgcs, Fidel A. Schaposnik Wigner RCP RMKI, Budapest, Hungary Non-Perturbative Methods in Quantum Field Theory 810. October 2014 Outline Introduction


  1. Twisted non-Abelian vortices Árpád Lukács, in collaboration with Péter Forgács, Fidel A. Schaposnik Wigner RCP RMKI, Budapest, Hungary Non-Perturbative Methods in Quantum Field Theory 8–10. October 2014

  2. Outline Introduction Dimensional reduction: twist Some solutions Static vortex solutions Twisting the elementary vortex Twisting the coincident composite vortex Conclusions

  3. Motivation Localised solutions ◮ Classical solutions ◮ Important in Quantum Theory as well ◮ Non-perturbative Vortices and strings ◮ A vortex is a 2D solution ◮ Can be the cross section of a string ◮ Strings may play an important role in confinement ◮ non-Abelian vortices have nice mathematical properties too

  4. Theory considered Bosonic sector of N = 2 supersymmetric SU ( 2 ) × U ( 1 ) gauge theory, SU ( 2 ) flavor symmetry. d 4 x L , � S = L = − 1 1 F µν F µν − µν G µν a + Tr ( D µ Φ) † D µ Φ − ( V 1 + V 2 ) , G a 4 g 2 4 g 2 1 2 where D µ Φ = ( ∂ µ − iA µ σ 0 / 2 − iC a µ σ a / 2 )Φ Potential V 1 = λ 1 V 2 = λ 2 8 ( Tr Φ † Φ − 2 ξ ) 2 , 8 ( Tr Φ † σ a Φ) 2 Properties of this theory: ◮ scalar sector of a supersymmetric theory ◮ possesses many localized solutions (strings, etc.)

  5. Spontaneous symmetry breaking Let � � φ 1 ψ 1 Φ = φ 2 ψ 2 with this notation: V 1 = λ 1 V 2 = λ 2 8 ( φ † φ + ψ † ψ − 2 ξ ) 2 , ( φ † φ − ψ † φ ) 2 + 4 | ψ † φ | 2 � � , 8 i.e., vacuum: both φ, ψ normalized to ξ and orthogonal Symmetry breaking pattern: U ( 1 ) × SU ( 2 ) × SU ( 2 ) global → SU ( 2 ) CF where SU ( 2 ) CF preserves the VEV, E.g., choosing � Φ � = ξ ✶ : SU ( 2 ) CF acts as Φ → V Φ V † Color-flavor locking: gauge and color symmetry both broken spontaneously, SU ( 2 ) CF remains unbroken Topology permits vortex solutions

  6. Some vortex solutions An ( n 1 , n 2 ) vortex: A ϑ = a ( r ) � φ 1 ( r ) e in 1 ϑ � Φ = , ψ 2 ( r ) e in 2 ϑ C 3 ϑ = c 3 ( r ) with real radial functions Radial equation for φ 1 , ψ 2 , a , c 3 solved numerically Further solutions generated: orientational normal modes Φ → V Φ V † , V ∈ SU ( 2 ) explicitly: Φ = χ + ✶ + χ − n a σ a , c a = n a ˜ c 3 where χ ± = ( φ 1 D + φ 2 D ) / 2. (Shifman etal., Auzzi etal.)

  7. Some vortex solutions An ( n 1 , n 2 ) vortex: A ϑ = a ( r ) � φ 1 ( r ) e in 1 ϑ � Φ = , ψ 2 ( r ) e in 2 ϑ C 3 ϑ = c 3 ( r ) with real radial functions Radial equation for φ 1 , ψ 2 , a , c 3 solved numerically Further solutions generated: orientational normal modes Φ → V Φ V † , V ∈ SU ( 2 ) explicitly: Φ = χ + ✶ + χ − n a σ a , c a = n a ˜ c 3 where χ ± = ( φ 1 D + φ 2 D ) / 2. (Shifman etal., Auzzi etal.)

  8. BPS Energy as sum-of-squares if λ i = g 2 i (fixed by SUSY): � 2 � 2 F ik ± g 2 ik ± g 2 1 1 � � 2 ǫ ik ( Tr Φ † σ 0 Φ − 2 ξ ) 1 2 G a 2 ǫ ik Tr Φ † σ a Φ E BPS = + 4 g 2 4 g 2 1 2 + 1 2 Tr ( D i Φ ± i ǫ ik D k Φ) † ( D i Φ ± i ǫ im D m Φ) ± ξ 4 F ik ǫ ik ∓ ǫ ik ∂ i Tr (Φ † D k Φ) . minimal energy: all squares vanish: F ik = ∓ g 2 2 ǫ ik ( Tr Φ † σ 0 Φ − 2 ξ ) , 1 ik = ∓ g 2 2 G a 2 ǫ ik Tr Φ † σ a Φ , D i Φ = ∓ i ǫ ik D k Φ , Energy: � d 2 x E BPs = 2 πξϕ E BPS = where ϕ is the number of flux quanta

  9. BPS multi-vortices Multi vortex solutions also possible ◮ No interaction between vortices ◮ Moduli: positions, orientations Moduli matrix approach (Eto etal.): ◮ Φ = S ( x + iy , x − iy ) − 1 Φ 0 ( x + iy ) Φ 0 holomorphic given, zeros of its determinant: position of vortices ◮ S = S 1 S 2 , Ω i = S i S † i , Ω 1 = exp ( ψ ) ◮ one equation for Ω = SS † , reduced to a holomorphic splitting problem 2 ) = − g 2 � � − ✶ e − ψ , z (Ω 2 ∂ z Ω − 1 2 0 Ω − 1 0 Ω − 1 Φ 0 Φ † N Tr Φ 0 Φ † ∂ ¯ 2 2 4 z ∂ z ψ = − g 2 � 2 ) e − ψ − N ξ � 1 0 Ω − 1 Tr (Φ 0 Φ † ∂ ¯ . 4 N Also for more general gauge groups

  10. Adding twist Straight string: translation invariance along axis z : � i � Φ( x µ ) = Φ( x i ) exp 2 M ω α x α , A µ ( x ν ) = ( A i ( x j ) , A α ( x j )) , C a µ ( x ν ) = ( C a i ( x j ) , C a α ( x j )) , Decoupling ω 2 = − ω α ω α = 0 ensures that the equations for Φ( x i ) , C a i , A i are unchanged ( i = 1 , 2) C a α = ω α C a A α = ω α A , The out-of-plane components satisfy a Gauss-constraint Solutions equivalent to solving mass deformed theory ◮ adjoint scalars: out-of-plane gauge field components ◮ mass matrix – twisting matrix (Collie, Eto etal., Gorsky etal.)

  11. Adding twist Straight string: translation invariance along axis z : � i � Φ( x µ ) = Φ( x i ) exp 2 M ω α x α , A µ ( x ν ) = ( A i ( x j ) , A α ( x j )) , C a µ ( x ν ) = ( C a i ( x j ) , C a α ( x j )) , Decoupling ω 2 = − ω α ω α = 0 ensures that the equations for Φ( x i ) , C a i , A i are unchanged ( i = 1 , 2) C a α = ω α C a A α = ω α A , The out-of-plane components satisfy a Gauss-constraint Solutions equivalent to solving mass deformed theory ◮ adjoint scalars: out-of-plane gauge field components ◮ mass matrix – twisting matrix (Collie, Eto etal., Gorsky etal.)

  12. Gauss constraint Gauss constraint for out-of-plane fields: � 1 A σ 0 + 1 = − 1 � Φ(Φ M − C Φ) † + (Φ M − C Φ)Φ † � D 2 C a σ a � i g 2 g 2 2 1 2 = − Φ M Φ † + 1 2 { C , ΦΦ † } , Physical quantities, like momentum in string axis direction and energy: � d 2 x Q , E = E BPS + where E BPS = 2 πξϕ (no. flux quanta) and � d 2 x Q T 03 = where Q is a current: ω 0 Q = ω 0 (Φ M − C Φ) M Φ † + Φ M (Φ M − C Φ) † � � 4 Tr , Angular momentum: T 0 ϑ = 1 F 0 ϑ F ϑ r + 1 G a 0 r G a ϑ r + Tr D 0 Φ † D ϑ Φ + Tr D ϑ Φ † D 0 Φ , g 2 g 2 1 2

  13. Gauss constraint Gauss constraint for out-of-plane fields: � 1 A σ 0 + 1 = − 1 � Φ(Φ M − C Φ) † + (Φ M − C Φ)Φ † � D 2 C a σ a � i g 2 g 2 2 1 2 = − Φ M Φ † + 1 2 { C , ΦΦ † } , Physical quantities, like momentum in string axis direction and energy: � d 2 x Q , E = E BPS + where E BPS = 2 πξϕ (no. flux quanta) and � d 2 x Q T 03 = where Q is a current: ω 0 Q = ω 0 (Φ M − C Φ) M Φ † + Φ M (Φ M − C Φ) † � � 4 Tr , Angular momentum: T 0 ϑ = 1 F 0 ϑ F ϑ r + 1 G a 0 r G a ϑ r + Tr D 0 Φ † D ϑ Φ + Tr D ϑ Φ † D 0 Φ , g 2 g 2 1 2

  14. An Ansatz for rotationally symmetric solutions in the plane � φ 1 ( r ) ψ 1 ( r ) e iN ϑ � Φ( x i ) = , ψ 2 ( r ) e iN ϑ φ 2 ( r ) A ϑ = a ( r ) , C a ϑ = c a ( r ) . Minimal Ansatz: φ i , ψ i real. c 2 = 0: consistency condition Diagonalizable: elementary or ( n 1 , n 2 ) vortex, V Φ D V † Coincident composite vortices (Shifman, Auzzi): N = − 1, flux 2 (Auzzi, Shifman, Yung) Parameter α : angle of ( φ 1 ( ∞ ) , φ 2 ( ∞ )) and ( 1 , 0 ) Small α ◮ φ 1 , ψ 2 , a , c 3 of unit magnitude ◮ c 1 , φ 2 , ψ 1 small

  15. An Ansatz for rotationally symmetric solutions in the plane � φ 1 ( r ) ψ 1 ( r ) e iN ϑ � Φ( x i ) = , ψ 2 ( r ) e iN ϑ φ 2 ( r ) A ϑ = a ( r ) , C a ϑ = c a ( r ) . Minimal Ansatz: φ i , ψ i real. c 2 = 0: consistency condition Diagonalizable: elementary or ( n 1 , n 2 ) vortex, V Φ D V † Coincident composite vortices (Shifman, Auzzi): N = − 1, flux 2 (Auzzi, Shifman, Yung) Parameter α : angle of ( φ 1 ( ∞ ) , φ 2 ( ∞ )) and ( 1 , 0 ) Small α ◮ φ 1 , ψ 2 , a , c 3 of unit magnitude ◮ c 1 , φ 2 , ψ 1 small

  16. An Ansatz for rotationally symmetric solutions in the plane � φ 1 ( r ) ψ 1 ( r ) e iN ϑ � Φ( x i ) = , ψ 2 ( r ) e iN ϑ φ 2 ( r ) A ϑ = a ( r ) , C a ϑ = c a ( r ) . Minimal Ansatz: φ i , ψ i real. c 2 = 0: consistency condition Diagonalizable: elementary or ( n 1 , n 2 ) vortex, V Φ D V † Coincident composite vortices (Shifman, Auzzi): N = − 1, flux 2 (Auzzi, Shifman, Yung) Parameter α : angle of ( φ 1 ( ∞ ) , φ 2 ( ∞ )) and ( 1 , 0 ) Small α ◮ φ 1 , ψ 2 , a , c 3 of unit magnitude ◮ c 1 , φ 2 , ψ 1 small

  17. An Ansatz for rotationally symmetric solutions in the plane � φ 1 ( r ) ψ 1 ( r ) e iN ϑ � Φ( x i ) = , ψ 2 ( r ) e iN ϑ φ 2 ( r ) A ϑ = a ( r ) , C a ϑ = c a ( r ) . Minimal Ansatz: φ i , ψ i real. c 2 = 0: consistency condition Diagonalizable: elementary or ( n 1 , n 2 ) vortex, V Φ D V † Coincident composite vortices (Shifman, Auzzi): N = − 1, flux 2 (Auzzi, Shifman, Yung) Parameter α : angle of ( φ 1 ( ∞ ) , φ 2 ( ∞ )) and ( 1 , 0 ) Small α ◮ φ 1 , ψ 2 , a , c 3 of unit magnitude ◮ c 1 , φ 2 , ψ 1 small

  18. Perturbative framework 1 1 0.8 0.5 0.6 0 0.4 -0.5 φ 1 (r) φ 1 (r) α -1 0.2 -1 ψ 1 (r) α -1 ψ 2 (r) 0 -1.5 -0.2 -2 a(r) c 1 (r) α -1 -0.4 -2.5 c 3 (r) -0.6 -3 0 2 4 6 8 10 0 2 4 6 8 10 r r Expansion in α : φ 1 = φ ( 0 ) + α 2 φ ( 2 ) ψ 1 = αψ ( 1 ) + . . . , + . . . , 1 1 1 φ 2 = αφ ( 1 ) ψ 2 = ψ ( 0 ) + α 2 ψ ( 2 ) + . . . , + . . . , 2 2 2 and a = a ( 0 ) + α 2 a ( 2 ) + . . . , c 1 = α c ( 1 ) + . . . . 1 c 3 = c ( 0 ) + α 2 c ( 2 ) + . . . , 3 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend