maximally non abelian vortices from self dual yang mills
play

Maximally Non-Abelian Vortices from Self-dual Yang-Mills Fields - PowerPoint PPT Presentation

Maximally Non-Abelian Vortices from Self-dual Yang-Mills Fields Norisuke Sakai (Tokyo Womans Christian University) In collaboration with Nicholas Manton , Phys.Lett. B687 , 395-399,(2010) [arXiv:1001.5236] , Talk at YITP workshop 2010.7.21


  1. Maximally Non-Abelian Vortices from Self-dual Yang-Mills Fields Norisuke Sakai (Tokyo Woman’s Christian University) In collaboration with Nicholas Manton , Phys.Lett. B687 , 395-399,(2010) [arXiv:1001.5236] , Talk at YITP workshop 2010.7.21 Contents 1 Introduction 2 2 SO (3) Invariant Instantons 3 3 General SO (3) Invariant Gauge Fields 5 4 Maximally Non-Abelian Vortices 7 5 Conclusion 10

  2. 1 Introduction Non-Abelian Vortex : plays an important role in Dual Confinement Cosmic String Moduli gives Effective Fields on the soliton Moduli Space describes Dynamics of Non-Abelian Vortices Non-Abelian Vortices in U ( N ) gauge theory : Moduli Matrix Approach No Exact solutions Exactly Solvable Vortex : U (1) Vortex on a Hyperbolic Plane Equivalent to Instantons along a Line Dimensional Reduction of Instantons to Hyperbolic Plane → Vortices Witten, Phys.Rev.Lett. 38 , 121 (1977) Our Pourpose: Find Exactly Solutions of Non-Abelian Vortices 2

  3. 2 SO (3) Invariant Instantons Pure SU (2) Gauge Theory in Euclidean 4 dimensions Instantons as Solutions of Self-duality Equations F µν = 1 2 ϵ µνλρ F λρ Instantons along a line (Let’s call it τ axis) Invariant under Rotations SO (3) around τ axis ( SU (2) gauge transformations can be accompanied) Take spherical polar coordinates r, θ, φ for S 3 ds 2 = dτ 2 + dr 2 + r 2 ( dθ 2 + sin 2 θdϕ 2 ) SO (3) invariant configurations : functions of τ, r (independent of θ, ϕ ) Complex coordinates (Stereographic projection of S 2 ) y = tan θ 2 e iϕ z = τ + ir, ( ) 4 ds 2 = dzd ¯ z + (Im z ) 2 y ) 2 dyd ¯ y (1 + y ¯ 3

  4. Conformally equivalent to hyperbolic plane and sphere Σ × S 2 ( ) ds 2 = (Im z ) 2 2 8 (Im z ) 2 dzd ¯ z + y ) 2 dyd ¯ y 2 (1 + y ¯ Yang-Mills Theory and Self-Duality is Conformally invariant SO (3) invariant Instantons are equivalent to U (1) vortices on a hyperbolic plane Σ Witten Ansatz : SO (3) of S 2 is embedded into SU (2) 0 = A 0 x a j = ϕ 2 + 1 ϵ jak x k + ϕ 1 x j x a A a A a r 3 ( δ ja − x j x a ) + A 1 r 2 , r 2 r Only U (1) ∈ SU (2) gauge symmetry is intact A gauge transformation gives ( A r = A 1 , H = − ϕ 1 − iϕ 2 ) ( 1 ) 0 A j = A i ( τ, r ) j = τ, r, , 0 − 1 ( ) ( ) ¯ − i ¯ 0 H ( τ, r ) − cos θ H ( τ, r ) sin θ A θ = , A ϕ = H ( τ, r ) 0 iH ( τ, r ) sin θ cos θ A i ( τ, r ) : 2 Dimensional gauge fields for U (1) ( I 3 of SU (2) ) 4

  5. H ( τ, r ) : charged complex scalar field Self-Duality 1 1 1 F τr = r 2 sin θ F θϕ , F τθ = sin θ F ϕr , F rθ = sin θ F τϕ Reduces to BPS equations for Vortices on a Hyperbolic Plane 1 2 r 2 (1 − | H | 2 ) D τ H = iD r H, F τr = 3 General SO (3) Invariant Gauge Fields Metric on Σ × S 2 ( σ = 2 (Im z ) 2 , if Σ is the hyperbolic plane) 8 ds 2 = σ ( z, ¯ z ) dzd ¯ z + y ) 2 dyd ¯ y (1 + y ¯ Field configuration should be invariant under a combined spatial SO (3) rotation and gauge SO (3) rotation General Embedding of SO (3) into Non-Abelian Group G Isotropy generator SO (2) is mapped to an SO (2) generator Λ in G Most general SO (3) invariant gauge potential A z = A z ( z, ¯ z ) , A ¯ z = A ¯ z ( z, ¯ z ) 5

  6. 1 1 y (¯ A y = y ( − Φ( z, ¯ z ) − i Λ¯ y ) , A ¯ y = Φ( z, ¯ z ) + i Λ y ) 1 + y ¯ 1 + y ¯ SO (2) = U (1) invariance (generators are anti-hermitian matrix) [Λ , A z ] = [Λ , A ¯ z ] = 0 [Λ , ¯ Φ] = i ¯ [Λ , Φ] = − i Φ , Φ Self-Duality ( F µν = ∂ µ A ν − ∂ ν A µ + [ A µ , A ν ] ) 8 F z ¯ y = 0 , F ¯ zy = 0 , y ) 2 F z ¯ z = σ F y ¯ y (1 + y ¯ ( ) z = σ D z ¯ 2 i Λ − [Φ , ¯ Φ = 0 , D ¯ z Φ = 0 , F z ¯ Φ] 8 Finite Energy Solutions → Vacuum ( F z ¯ z = 0 ) at z → ∞ Vacuum value Φ 0 of Φ forms SO (3) algebra [Λ , ¯ Φ 0 ] = i ¯ [Φ 0 , ¯ [Λ , Φ 0 ] = − i Φ 0 , Φ 0 , Φ 0 ] = 2 i Λ Boundary Condition at r = Im z = 0 : Fields approach vacuum values 6

  7. 4 Maximally Non-Abelian Vortices Take SU (2 N ) gauge group : Λ can be taken in Cartan subalgebra   Λ 1 ∑   Λ 2 ...   Λ = i Λ α = 0  ,  Λ 2 N [Λ , Φ] = − i Φ → Λ β − Λ α = 1 if Φ αβ ̸ = 0 Maximally Non-Abelian case ( 1 N ) Λ = i 0 0 − 1 N 2 � SU (2 N ) → SU ( N ) × SU ( N ) × U (1) gauge symmetry SO (3) invariant gauge fields on Σ × S 2 ( A z ) ( A ¯ ) 0 0 z A z = , A ¯ z = � � 0 0 A z A ¯ z ( 0 0 ) ( 0 H † ) ¯ Φ = Φ = , H 0 0 0 7

  8. A z ) : SU ( N ) ( � A z , ( ˜ SU ( N ) ) gauge field � H : A Higgs scalar in Bi-fundamental of SU ( N ) × SU ( N ) Bogomolny equations for non-Abelian Vortices on Hyperbolic Plane D z H † = 0 , D ¯ z H = 0 ( ) ( 1 N − HH † ) z = σ z = σ � − 1 N + H † H F z ¯ , F z ¯ 8 8 z H + � D ¯ z H = ∂ ¯ A ¯ z H − HA ¯ z , F z ¯ z = ∂ z A ¯ z − ∂ ¯ z A z + [ A z , A ¯ z ] Vacuum Solutions   1   1   � A z = 0 , A z = 0 H =  , ...  1 Unbroken local gauge symmetry : SU ( N ) d diagonal gauge group If SU (2 N ) → SU ( N 1 ) × SU ( N 2 ) × U (1) , N 1 ̸ = N 2 , F z ¯ z = 0 vacuum does not exist 8

  9. Exact Vortex Solutions     ia (1) h (1) z ¯     1 0   z = − �   H = z =  , A ¯ A ¯ ... ...    1 0 Bogomolny equations reduce to ( f (1) z = ∂ z a (1) z a (1) − ∂ ¯ z ) z ¯ z ¯ ( − 1 + | h (1) | 2 ) z = σ z h (1) − 2 ia (1) z h (1) = 0 , if (1) ∂ ¯ ¯ z ¯ 8 = Witten’s equation for U (1) vortices on hyperbolic plane Exactly solved by mapping to the Liouville equation We found exact solutions in the diagonal U (1) N subgroup Genuine non-Abelian vortices (fractional U (1) and SU ( N ) winding) Solutions with complete orientational moduli remain to be worked out Moduli Matrix and Master Equations Solution of the first BPS equation � z = � z � z = S − 1 ∂ ¯ S − 1 ∂ ¯ A ¯ z S − ∂ ¯ z ψ 1 N , A ¯ S + ∂ ¯ z ψ 1 N 9

  10. 1 z ) � 2 ψ ( z, ¯ S − 1 ( z, ¯ H ( z, ¯ z ) = e z ) H 0 ( z ) S ( z, ¯ z ) Moduli matrix H 0 ( z ) , Master equations ( Ω ≡ SS † , � Ω ≡ � S � S † ) ( ) − 1 + 1 z ψ = σ Ω − 1 H 0 Ω H † N e ψ Tr( � 0 ) ∂ z ∂ ¯ 4 ( ) Ω − 1 H 0 Ω − 1 z Ω) = σ H † Ω − 1 H 0 Ω H † 0 � N 1 N Tr( � ∂ z (Ω − 1 ∂ ¯ 8 e ψ 0 ) ( ) 0 − 1 Ω) = − σ Ω − 1 H 0 Ω H † Ω − 1 H 0 Ω H † ∂ z ( � z � � N 1 N Tr( � Ω − 1 ∂ ¯ 8 e ψ 0 ) 5 Conclusion 1. SO (3) symmetric instantons of SU (2 N ) gauge group gives non- Abelian vortices on a hyperbolic plane . 2. Maximally non-Abelian case gives non-Abelian vortices in SU ( N ) × � SU ( N ) × U (1) gauge group. 3. The maximally non-Abelian vortices possess unbroken non-Abelian gauge symmetry SU ( N ) d . 4. Exact solutions of U (1) N subgroup are completely obtained, but the orientational moduli remain to be worked out. 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend