non abelian vortices in spi nor bose einstein condensates
play

Non-Abelian Vortices in Spi nor Bose-Einstein Condensates Michikazu - PowerPoint PPT Presentation

Non-Abelian Vortices in Spi nor Bose-Einstein Condensates Michikazu Kobayashi a Collaborators: Yuki Kawaguchi a , Muneto Nitta b , and Masahito Ueda a University of Tokyo a and Keio University b Apr. 21, 2009, Workshop of A03-A04 groups for


  1. Non-Abelian Vortices in Spi nor Bose-Einstein Condensates Michikazu Kobayashi a Collaborators: Yuki Kawaguchi a , Muneto Nitta b , and Masahito Ueda a University of Tokyo a and Keio University b Apr. 21, 2009, Workshop of A03-A04 groups for Physics of New Quantum Phases in Superclean Materials(O22)

  2. Contents 1. Vortices in Bose-Einstein condensates 2. Spin-2 Bose-Einstein condensates 3. Vortices in spin-2 Bose-Einstein condensates 4. Collision dynamics of vortices 5. Summary

  3. Vortices in Bose-Einstein Condensates vortex in 87 Rb BEC K. W. Madison et al. PRL 86 , 4443 (2001) vortex Vortices appears as line defects in 4 He when symmetry breaking happens • Vortices are Abelian for single-component BEC G. P. Bewley et al. Nature 441 , 588 (2006)

  4. Quantized Vortex and Topological Charge Topological charge of a vortex can be considered how order parameter changes around the vortex core Single component BEC : Topological charge can be expressed by integer n

  5. Quantized Vortex and Topological Charge Topological charge of a vortex can be considered how order parameter changes around the vortex core Topological charge can be expressed by the first homotopy group single component BEC G (= U (1)) : Symmetry of the system ¼ 1 ( G / H ) = Z H ( = 1 ) : Symmetry of the order-parameter When topological charge can be expressed by non-commutative algebra ( : first homotopy group ¼ 1 is non-Abelian), we define such vortices as “ non-Abelian vortices ”

  6. Spin-2 BEC Bose-Einstein condensate in optical trap (spin degrees of freedom is alive) 87 Rb ( I = 3/2 ) Hyperfine coupling ( F = I + S ) BEC characterized by m F

  7. Introduction of spinor BEC Hamiltonian of spinor boson system (without trapping and magnetic field) Contact interaction ( l = 0)

  8. Mean Field Approximation for BEC at T = 0 Case of Spin-2 n tot : total density F : magnetization A 00 : singlet pair amplitude

  9. Spin-2 BEC 1. c 1 < 0 → ferromagnetic phase : F ≠ 0 2. c 1 > 0, c 2 < 0 → polar phase : F = 0, A 00 ≠ 0 3. c 1 > 0, c 2 > 0 → cyclic phase : F = A 00 = 0 ferromagnetic polar cyclic

  10. Spin-2 BEC Cyclic phase Y 2,2 Y 2,1 Y 2,0 0 4 ¼ /3 + + Y 2,-1 Y 2,-2 2 ¼ /3 + + headless triad

  11. Triad of 3 He-A and cyclic phase 3 He-A 0 4 ¼ /3 2 ¼ /3 1. Having a ¼ –rotational symmetry 2. Three axes can interchange each 2 ¼ /3 gauge other by 2 ¼ /3 gauge transformation transformation

  12. Vortices in Spinor BEC S = 1 Polar phase ¼ gauge transformation headless vector Half quantized vortex : spin & gauge rotate by ¼ around vortex core 0 Topological charge can be expressed by integer and half integer (Abelian vortex) p

  13. Vortices in Spin-2 BEC There are 5 types of vortices in the cyclic phase gauge vortex integer spin vortex

  14. Vortices in Spin-2 BEC 1/2-spin vortex : triad rotate by ¼ around three axis e x , e y , e z

  15. Vortices in Spin-2 BEC 1/3 vortex : triad rotate by 2 ¼ /3 around four axis e 1 , e 2 , e 3 , e 4 and 2 ¼ /3 gauge transformation 0 4 p /3 2 ¼ /3 gauge transformation 2 p /3

  16. Vortices in Spin-2 BEC 4, 2/3 vortex : triad rotate by 4 ¼ /3 around four axis e 1 , e 2 , e 3 , e 4 and 4 ¼ /3 gauge transformation 0 4 p /3 4 ¼ /3 gauge transformation 2 p /3

  17. Vortices in Spin-2 BEC vortices mass circulation core structure gauge 1 density core Integer spin 0 polar core 1/2 spin 0 polar core 1/3 1/3 ferromagnetic core 2/3 2/3 ferromagnetic core

  18. Topological Charge of Vortices is Non-Abelian There are 12 rotations for vortices

  19. Non-Abelian Vortices 12 rotations makes non-Abelian tetrahedral group T Topological charge can be expressed by non-Abelian algebra which includes tetrahedral symmetry →non-Abelian vortex

  20. Collision Dynamics of Vortices “ Non-Abelian ” character becomes remarkable when two vortices collide with each other →Numerical simulation of the Gross-Pitaevskii equation Initial state : two straight vortices in oblique angle, linked vortices

  21. Gross-Pitaevskii Equation

  22. Used Pair of Vortices 1, same vortices 1/3 vortex ( e 1 ) 1/3 vortex ( e 1 ) 2, different commutative 1/3 vortex ( e 1 ) 2/3 vortex ( e 1 ) vortices 3, different non- 1/3 vortex ( e 1 ) 2/3 vortex ( e 2 ) commutative vortices 1/3 vortex ( e 1 ) 1/3 vortex ( e 2 )

  23. Collision Dynamics of Vortices Commutative topological charge Non-commutative topological charge reconnection polar rung ferromagnetic passing rung through

  24. Collision Dynamics of Linked Vortices Commutative Non-commutative untangle not untangle

  25. Algebraic Approach Consider 4 closed paths encircling two vortices Path d defines vortex B as ABA -1 (same conjugacy class)

  26. Y-shape Junction B AB A

  27. Collision of Vortices B A B A AB ABA -1 A A ABA -1 B A (only Abelian) B B -1 AB BA -1 A A B ABA -1

  28. Collision of Same Vortices A A A A × A 2 A A A A A A ○ × Energetically unfavorable A A 1 reconnection A A A A

  29. Collision of Different Commutative Vortices B A B A × AB Energetically unfavorable ABA -1 A A ABA -1 × B A ○ B B -1 AB BA -1 Passing A A B ABA -1

  30. Collision of Different Non-commutative Vortices B A B A AB ○ ABA -1 A A ABA -1 B A ○ × Topologically forbidden B B -1 AB BA -1 rung A A B ABA -1

  31. Linked Vortices non-commutative B A B A AB -1 A -1 B ABA -1 A AB -1 ABA -1 ABA -1 ABA -1 AB -1 ABA -1 B A commutative Linked vortices cannot untangle A B

  32. Summary 1. Vortices with non-commutative circulations are defined as non-Abelian vortices. 2. Non-Abelian vortices can be realized in the cyclic phase of spin-2 BEC 3. Collision of two non-Abelian vortices create a new vortex between them as a rung (networking structure).

  33. Future: Topological Charge of Linked Vortices ≠ Linked vortex itself has another topological charge →Searching and applying new homotopy theories Poster-11, S. Kobayashi “Classification of topological defects by Fox homotopy group”

  34. Future: Network Structure in Quantum Turbulen ce Turbulence with Abelian vortices ↓ • Cascade of vortices Turbulence with non-Abelian vortices ↓ • Large-scale networking structures among vortices with rungs • Non-cascading turbulence New turbulence!

  35. Quantized Vortices in Multi-component BEC 3 He-A Scalar BEC 4 He d vector + triad gauge integer vortex 1/2 vortex Polar in S = 1 BEC reverse of 1/2 vortex d vector ¼ gauge transformation gauge + headless vector

  36. Spin-2 BEC Bose-Einstein condensate in optical trap (spin degrees of freedom is alive) 87 Rb ( I = 3/2 ) Hyperfine coupling ( F = I + S ) BEC characterized by m F

  37. Spin dynamics of BEC Stern-Gerlach experiment F = 1 F = 2 J. Stenger et al. Nature 396 , 345 (1998) H. Schmaljohann et al. PRL 92 , 040402 (2004)

  38. Spin-2 BEC 1. c 1 < 0 → ferromagnetic phase : F ≠ 0 2. c 1 > 0, c 2 < 0 → polar phase : F = 0, A 00 ≠ 0 3. c 1 > 0, c 2 > 0 → cyclic phase : F = A 00 = 0 ferromagnetic polar cyclic

  39. Spin-2 BEC 1. c 1 < 0 → ferromagnetic phase : F ≠ 0 2. c 1 > 0, c 2 < 0 → polar phase : F = 0, A 00 ≠ 0 3. c 1 > 0, c 2 > 0 → cyclic phase : F = A 00 = 0 Experimental observation for 87 Rb Whether the system is in polar or cyclic has c 1 / (4 ¼ h 2 / M ) = (0.99 ± 0.06) a B not decided yet c 2 / (4 ¼ h 2 / M ) = (-0.53 ± 0.58) a B A. Widera et al. New J. Phys 8 , 152 (2006)

  40. Phase Diagram Phase diagram with neglecting linear Zeeman q polar-u ferro cyclic polar-b c 2 c 1

  41. Phase Diagram

  42. Phase Diagram Estimation of number density : TF Assuming cyclic phase cyclic vs ferro cyclic vs polar

  43. 渦状態 最も低エネルギーだと思われる(有限 mass circulation の)渦 • Cyclic : 1/3 vortex 実はどちらも非可換量子渦の1つ • Polar : 1/4 vortex

  44. 渦状態 (1/3 vortex)

  45. 渦状態 (1/3 vortex)

  46. 渦状態 (1/3 vortex)

  47. 渦状態 (1/4 vortex)

  48. 渦状態 (1/4 vortex)

  49. 渦状態 (1/4 vortex)

  50. まとめ 1. cyclic では polar コアの、 polar では cyclic の渦が入る。 2. polar コアは 2 回軸対称を、 cyclic コアは 3 回軸対称性を自発的に 破る(入った渦の対称性が見えれば相を同定できる?) 3. 以上の結果から、局所密度近似が敗れるような状況では polar 相は 2 回軸対称性の破れを cyclic 相は 3 回軸対称性の破れを好 む可能性がある( 3 角形のトラップや 3 角格子を作れば c 2 < 0 で も cyclic が増強される可能性がある)。

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend