towards a functor between affine and finite hecke
play

Towards a functor between affine and finite Hecke categories in type - PowerPoint PPT Presentation

Towards a functor between affine and finite Hecke categories in type A Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


  1. Towards a functor between affine and finite Hecke categories in type A Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 1 / 19

  2. Braid groups B n ≃ π 1 ( Conf n ( C ) , ζ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 2 / 19

  3. Braid groups B n ≃ π 1 ( Conf n ( C ) , ζ ) ≃ π 1 ( Conf n ( C ∗ ) , ζ ) B aff n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 2 / 19

  4. Braid groups B n ≃ π 1 ( Conf n ( C ) , ζ ) ≃ π 1 ( Conf n ( C ∗ ) , ζ ) B aff n C ∗ ֒ → C � B aff → B n n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 2 / 19

  5. Finite Hecke algebra W = S n – symmetric group. I = { (1 2) , (2 3) , ..., ( n − 1 n ) } ⊂ S n . s i = ( i i + 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 3 / 19

  6. Finite Hecke algebra W = S n – symmetric group. I = { (1 2) , (2 3) , ..., ( n − 1 n ) } ⊂ S n . s i = ( i i + 1). H ( W ) = H n – unital algebra over Z [ v , v − 1 ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 3 / 19

  7. Finite Hecke algebra W = S n – symmetric group. I = { (1 2) , (2 3) , ..., ( n − 1 n ) } ⊂ S n . s i = ( i i + 1). H ( W ) = H n – unital algebra over Z [ v , v − 1 ]. Generators: { t s , s ∈ I } ; t i := t s i . Relations: 1. t i t i +1 t i = t i +1 t i t i +1 . 2. t i t j = t j t i , | i − j | > 1 . i = 1 + ( v − 1 − v ) t i . 3. t 2 H n has a basis { t w , w ∈ W } , defined by t w = t s 1 . . . t s k for a reduced expression w = s 1 . . . s k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 3 / 19

  8. Extended affine Hecke algebra ( X ∗ , Φ , X ∗ , Φ ∨ ) – root datum of GL n . X ∗ = X ∗ =: X ≃ Z n = span Z { e 1 , . . . , e n } , Φ ∨ = Φ = { e i − e j } i � = j ⊂ X . W acts on X and Φ permuting e i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 4 / 19

  9. Extended affine Hecke algebra ( X ∗ , Φ , X ∗ , Φ ∨ ) – root datum of GL n . X ∗ = X ∗ =: X ≃ Z n = span Z { e 1 , . . . , e n } , Φ ∨ = Φ = { e i − e j } i � = j ⊂ X . W acts on X and Φ permuting e i . ∆ = { e i − e i +1 } n − 1 i =1 – simple roots. X + = { ( λ 1 , . . . , λ n ) , λ k ≥ λ k +1 for all k } – dominant weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 4 / 19

  10. Extended affine Hecke algebra ( X ∗ , Φ , X ∗ , Φ ∨ ) – root datum of GL n . X ∗ = X ∗ =: X ≃ Z n = span Z { e 1 , . . . , e n } , Φ ∨ = Φ = { e i − e j } i � = j ⊂ X . W acts on X and Φ permuting e i . ∆ = { e i − e i +1 } n − 1 i =1 – simple roots. X + = { ( λ 1 , . . . , λ n ) , λ k ≥ λ k +1 for all k } – dominant weights. ˜ – unital algebra over Z [ v , v − 1 ]. H aff n Generators: { t s , s ∈ I , θ x , x ∈ X } ; t i := t s i , θ i := θ e i . Relations: 1. t i t i +1 t i = t i +1 t i t i +1 . 2. t i t j = t j t i , | i − j | > 1 . i = 1 + ( v − 1 − v ) t i . 3. t 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 4 / 19

  11. Extended affine Hecke algebra ( X ∗ , Φ , X ∗ , Φ ∨ ) – root datum of GL n . X ∗ = X ∗ =: X ≃ Z n = span Z { e 1 , . . . , e n } , Φ ∨ = Φ = { e i − e j } i � = j ⊂ X . W acts on X and Φ permuting e i . ∆ = { e i − e i +1 } n − 1 i =1 – simple roots. X + = { ( λ 1 , . . . , λ n ) , λ k ≥ λ k +1 for all k } – dominant weights. ˜ – unital algebra over Z [ v , v − 1 ]. H aff n Generators: { t s , s ∈ I , θ x , x ∈ X } ; t i := t s i , θ i := θ e i . Relations: 1. t i t i +1 t i = t i +1 t i t i +1 . 2. t i t j = t j t i , | i − j | > 1 . i = 1 + ( v − 1 − v ) t i . 3. t 2 4. θ x θ y = θ x + y . 5. t i θ j = θ j t i if j � = i , i + 1. 6. t i θ i t i = θ i +1 . 7. θ 0 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 4 / 19

  12. The homomorphism Π : ˜ H aff n → H n . Definition Π( t i ) = t i , Π( θ 1 ) = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 5 / 19

  13. The homomorphism Π : ˜ H aff n → H n . Definition Π( t i ) = t i , Π( θ 1 ) = 1 . This defines Π uniquely. Π( θ k ) = t k − 1 t k − 2 . . . t 2 t 2 1 t 2 ... t k − 2 t k − 1 =: JM k are called (multiplicative) Jucys-Murphy elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 5 / 19

  14. The homomorphism Π : ˜ H aff n → H n . Definition Π( t i ) = t i , Π( θ 1 ) = 1 . This defines Π uniquely. Π( θ k ) = t k − 1 t k − 2 . . . t 2 t 2 1 t 2 ... t k − 2 t k − 1 =: JM k are called (multiplicative) Jucys-Murphy elements. λ ∈ X � W λ – W-orbit. Theorem (Bernstein) The center of ˜ H aff is a free Z [ v , v − 1 ] -module with a basis given by n elements { z λ , λ ∈ X + } , ∑ z λ := θ µ . µ ∈ W λ Theorem (Dipper-James, Francis-Graham) Set of symmetric polynomials in { JM i } is the center of H n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 5 / 19

  15. Categorification. Finite side G = GL n ( C ), B – Borel subgroup, U ⊂ B – unipotent radical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 6 / 19

  16. Categorification. Finite side G = GL n ( C ), B – Borel subgroup, U ⊂ B – unipotent radical. B = G / B – flag variety, Y = G / U – base affine space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 6 / 19

  17. Categorification. Finite side G = GL n ( C ), B – Borel subgroup, U ⊂ B – unipotent radical. B = G / B – flag variety, Y = G / U – base affine space. Y × Y is a T × T -torsor over B × B . D fin := ˆ ˆ D b c , G , mon ( Y × Y ) – finite Hecke category. ˆ D bc , G , mon ( Y × Y ) – completed monodromic (with unipotent monodromy) bounded G -equivariant derived category of constructible sheaves on Y × Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 6 / 19

  18. Categorification. Finite side G = GL n ( C ), B – Borel subgroup, U ⊂ B – unipotent radical. B = G / B – flag variety, Y = G / U – base affine space. Y × Y is a T × T -torsor over B × B . D fin := ˆ ˆ D b c , G , mon ( Y × Y ) – finite Hecke category. ˆ D bc , G , mon ( Y × Y ) – completed monodromic (with unipotent monodromy) bounded G -equivariant derived category of constructible sheaves on Y × Y . G × Y a ( g , x )=( x , gx ) π ( g , x )= g G Y × Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kostiantyn Tolmachov partly joint with Roman Bezrukavnikov Towards a functor between Hecke categories 6 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend