knizhnik zamolodchikov functor for degenerate double
play

KnizhnikZamolodchikov functor for degenerate double affine Hecke - PowerPoint PPT Presentation

RDAHAs dDAHAs Algebraic KZ KnizhnikZamolodchikov functor for degenerate double affine Hecke algebras Wille Liu Universit de Paris 30 June 2020 RDAHAs dDAHAs Algebraic KZ Plan 1 RDAHAs KZ equations RDAHAs KZ functor 2 dDAHAs AKZ


  1. RDAHAs dDAHAs Algebraic KZ KZ functor for RDAHAs : definition (cont.) O ( H rat ) : category of coherent H rat -modules on which D ξ acts locally nilpotently for ξ ∈ h ∗ KZ functor [Guay–Ginzburg–Opdam–Rouquier ’03] The KZ functor V : O ( H rat ) → H W -mod is defined by the assignement O ( H rat ) ∋ M �→ M ∇ ∈ H W -mod . Recall the Iwahori–Hecke algebra H W is generated by T α for simple roots α ∈ Π modulo the braid relations T α T β T α · · · = T β T α T β · · ·

  2. RDAHAs dDAHAs Algebraic KZ KZ functor for RDAHAs : definition (cont.) O ( H rat ) : category of coherent H rat -modules on which D ξ acts locally nilpotently for ξ ∈ h ∗ KZ functor [Guay–Ginzburg–Opdam–Rouquier ’03] The KZ functor V : O ( H rat ) → H W -mod is defined by the assignement O ( H rat ) ∋ M �→ M ∇ ∈ H W -mod . Recall the Iwahori–Hecke algebra H W is generated by T α for simple roots α ∈ Π modulo the braid relations T α T β T α · · · = T β T α T β · · · and the quadratic relations ( T α − v α )( T α + v − 1 α ) = 0

  3. RDAHAs dDAHAs Algebraic KZ KZ functor for RDAHAs : definition (cont.) O ( H rat ) : category of coherent H rat -modules on which D ξ acts locally nilpotently for ξ ∈ h ∗ KZ functor [Guay–Ginzburg–Opdam–Rouquier ’03] The KZ functor V : O ( H rat ) → H W -mod is defined by the assignement O ( H rat ) ∋ M �→ M ∇ ∈ H W -mod . Recall the Iwahori–Hecke algebra H W is generated by T α for simple roots α ∈ Π modulo the braid relations T α T β T α · · · = T β T α T β · · · and the quadratic relations ( T α − v α )( T α + v − 1 α ) = 0 Parameters are given by v α = exp( π √− 1 h α )

  4. RDAHAs dDAHAs Algebraic KZ KZ functor for RDAHAs : properties KZ functor V : O ( H rat ) → H W -mod V ( M ) = M ∇ Theorem [Guay–Ginzburg–Opdam–Rouquier ’03] 1 O ( H rat ) is a highest weight category with index set Irrep( W )

  5. RDAHAs dDAHAs Algebraic KZ KZ functor for RDAHAs : properties KZ functor V : O ( H rat ) → H W -mod V ( M ) = M ∇ Theorem [Guay–Ginzburg–Opdam–Rouquier ’03] 1 O ( H rat ) is a highest weight category with index set Irrep( W ) 2 V is a quotient functor of abelian categories, inducing equivalence O ( H rat ) / ker V ∼ = H W -mod

  6. RDAHAs dDAHAs Algebraic KZ KZ functor for RDAHAs : properties KZ functor V : O ( H rat ) → H W -mod V ( M ) = M ∇ Theorem [Guay–Ginzburg–Opdam–Rouquier ’03] 1 O ( H rat ) is a highest weight category with index set Irrep( W ) 2 V is a quotient functor of abelian categories, inducing equivalence O ( H rat ) / ker V ∼ = H W -mod 3 V satisfies the double centraliser property, i.e. V is fully faithful on projective objects of O ( H rat )

  7. RDAHAs dDAHAs Algebraic KZ KZ functor for RDAHAs : properties KZ functor V : O ( H rat ) → H W -mod V ( M ) = M ∇ Theorem [Guay–Ginzburg–Opdam–Rouquier ’03] 1 O ( H rat ) is a highest weight category with index set Irrep( W ) 2 V is a quotient functor of abelian categories, inducing equivalence O ( H rat ) / ker V ∼ = H W -mod 3 V satisfies the double centraliser property, i.e. V is fully faithful on projective objects of O ( H rat ) 4 L ∈ O ( H rat ) : simple module, P L ∈ O ( H rat ) : projective cover of L . Then L ∈ ker V ⇔ P L is not injective

  8. RDAHAs dDAHAs Algebraic KZ Example : SL2 W = � s ; s 2 = e � . h R = R · ϵ , ∆ = {± α } , � α, ϵ � = 1 ,

  9. RDAHAs dDAHAs Algebraic KZ Example : SL2 W = � s ; s 2 = e � . h R = R · ϵ , ∆ = {± α } , � α, ϵ � = 1 , KZ : dz f − h 1 − s d f = 0 z

  10. RDAHAs dDAHAs Algebraic KZ Example : SL2 W = � s ; s 2 = e � . h R = R · ϵ , ∆ = {± α } , � α, ϵ � = 1 , KZ : dz f − h 1 − s d f = 0 z Dunkl : D = d dz − hz − 1 (1 − s )

  11. RDAHAs dDAHAs Algebraic KZ Example : SL2 W = � s ; s 2 = e � . h R = R · ϵ , ∆ = {± α } , � α, ϵ � = 1 , KZ : dz f − h 1 − s d f = 0 z Dunkl : D = d dz − hz − 1 (1 − s ) RDAHA : H rat = C � z, s, D � / ( sz = − zs, sD = − Ds, [ D, z ] = 1 − 2 hs ) .

  12. RDAHAs dDAHAs Algebraic KZ Example : SL2 W = � s ; s 2 = e � . h R = R · ϵ , ∆ = {± α } , � α, ϵ � = 1 , KZ : dz f − h 1 − s d f = 0 z Dunkl : D = d dz − hz − 1 (1 − s ) RDAHA : H rat = C � z, s, D � / ( sz = − zs, sD = − Ds, [ D, z ] = 1 − 2 hs ) . Iwahori–Hecke H W = C [ T ] / ( T − v )( T + v − 1 ) , v = exp( π √− 1 h ) . T = monodromy of half-turn around 0 ∈ C .

  13. RDAHAs dDAHAs Algebraic KZ Example : SL2 RDAHA : H rat = C � z, s, D � / ( sz = − zs, sD = − Ds, [ D, z ] = 1 − 2 hs ) . Iwahori–Hecke H W = C [ T ] / ( T − v )( T + v − 1 ) , v = exp( π √− 1 h ) . T = monodromy of half-turn around 0 ∈ C . Consider h = 1 / 2 . Then H rat has a one-dimensional module

  14. RDAHAs dDAHAs Algebraic KZ Example : SL2 RDAHA : H rat = C � z, s, D � / ( sz = − zs, sD = − Ds, [ D, z ] = 1 − 2 hs ) . Iwahori–Hecke H W = C [ T ] / ( T − v )( T + v − 1 ) , v = exp( π √− 1 h ) . T = monodromy of half-turn around 0 ∈ C . Consider h = 1 / 2 . Then H rat has a one-dimensional module L triv = C · u 0 .

  15. RDAHAs dDAHAs Algebraic KZ Example : SL2 RDAHA : H rat = C � z, s, D � / ( sz = − zs, sD = − Ds, [ D, z ] = 1 − 2 hs ) . Iwahori–Hecke H W = C [ T ] / ( T − v )( T + v − 1 ) , v = exp( π √− 1 h ) . T = monodromy of half-turn around 0 ∈ C . Consider h = 1 / 2 . Then H rat has a one-dimensional module L triv = C · u 0 . zu 0 = Du 0 = 0 , su 0 = u 0 .

  16. RDAHAs dDAHAs Algebraic KZ Example : SL2 RDAHA : H rat = C � z, s, D � / ( sz = − zs, sD = − Ds, [ D, z ] = 1 − 2 hs ) . Iwahori–Hecke H W = C [ T ] / ( T − v )( T + v − 1 ) , v = exp( π √− 1 h ) . T = monodromy of half-turn around 0 ∈ C . Consider h = 1 / 2 . Then H rat has a one-dimensional module L triv = C · u 0 . zu 0 = Du 0 = 0 , su 0 = u 0 . In this case,

  17. RDAHAs dDAHAs Algebraic KZ Example : SL2 RDAHA : H rat = C � z, s, D � / ( sz = − zs, sD = − Ds, [ D, z ] = 1 − 2 hs ) . Iwahori–Hecke H W = C [ T ] / ( T − v )( T + v − 1 ) , v = exp( π √− 1 h ) . T = monodromy of half-turn around 0 ∈ C . Consider h = 1 / 2 . Then H rat has a one-dimensional module L triv = C · u 0 . zu 0 = Du 0 = 0 , su 0 = u 0 . In this case, v = exp( π √− 1 h ) = √− 1

  18. RDAHAs dDAHAs Algebraic KZ Example : SL2 RDAHA : H rat = C � z, s, D � / ( sz = − zs, sD = − Ds, [ D, z ] = 1 − 2 hs ) . Iwahori–Hecke H W = C [ T ] / ( T − v )( T + v − 1 ) , v = exp( π √− 1 h ) . T = monodromy of half-turn around 0 ∈ C . Consider h = 1 / 2 . Then H rat has a one-dimensional module L triv = C · u 0 . zu 0 = Du 0 = 0 , su 0 = u 0 . In this case, v = exp( π √− 1 h ) = √− 1 H W = C [ T ] / ( T − √− 1) 2

  19. RDAHAs dDAHAs Algebraic KZ Example : SL2 RDAHA : H rat = C � z, s, D � / ( sz = − zs, sD = − Ds, [ D, z ] = 1 − 2 hs ) . Iwahori–Hecke H W = C [ T ] / ( T − v )( T + v − 1 ) , v = exp( π √− 1 h ) . T = monodromy of half-turn around 0 ∈ C . Consider h = 1 / 2 . Then H rat has a one-dimensional module L triv = C · u 0 . zu 0 = Du 0 = 0 , su 0 = u 0 . In this case, v = exp( π √− 1 h ) = √− 1 H W = C [ T ] / ( T − √− 1) 2 ker V = � L triv � .

  20. Recall (trigonometrically) degenerate DAHAs !

  21. RDAHAs dDAHAs Algebraic KZ AKZ equations for H gr − aff n H gr − aff : graded affine Hecke algebra for GL n , n

  22. RDAHAs dDAHAs Algebraic KZ AKZ equations for H gr − aff n H gr − aff : graded affine Hecke algebra for GL n , n generated by subalgebras C [ x 1 , · · · , x n ] and C S n

  23. RDAHAs dDAHAs Algebraic KZ AKZ equations for H gr − aff n H gr − aff : graded affine Hecke algebra for GL n , n generated by subalgebras C [ x 1 , · · · , x n ] and C S n modulo relations : [ s i , x j ] = 0 for j / ∈ { i, i + 1 } , s i x i − x i +1 s i = h and s i x i +1 − x i s i = − h .

  24. RDAHAs dDAHAs Algebraic KZ AKZ equations for H gr − aff n H gr − aff : graded affine Hecke algebra for GL n , n

  25. RDAHAs dDAHAs Algebraic KZ AKZ equations for H gr − aff n H gr − aff : graded affine Hecke algebra for GL n , n M f.d. H gr − aff -module n

  26. RDAHAs dDAHAs Algebraic KZ AKZ equations for H gr − aff n H gr − aff : graded affine Hecke algebra for GL n , n M f.d. H gr − aff -module n Affine Knizhnik–Zamolodchikov (AKZ) equations for M are the following PDEs for f with values in M : i − 1 � ∂ 1 − s i,k z i f + x i · f − h f ( ∗ ) ∂z i 1 − z k /z i k =1 n � 1 − s i,k f − h � ρ, ω ∨ − h i � = 0 , i ∈ [1 , n ] 1 − z i /z k k = i +1 h ∈ C : parameter

  27. RDAHAs dDAHAs Algebraic KZ AKZ equations for H gr − aff n H gr − aff : graded affine Hecke algebra for GL n , n M f.d. H gr − aff -module n Affine Knizhnik–Zamolodchikov (AKZ) equations for M are the following PDEs for f with values in M : i − 1 � ∂ 1 − s i,k z i f + x i · f − h f ( ∗ ) ∂z i 1 − z k /z i k =1 n � 1 − s i,k f − h � ρ, ω ∨ − h i � = 0 , i ∈ [1 , n ] 1 − z i /z k k = i +1 h ∈ C : parameter Schur–Weyl ⇒ KZ equations for GL m on P 1 (WZW ( ∗ ) = = = = = = = conformal blocks).

  28. RDAHAs dDAHAs Algebraic KZ AKZ equations for root systems ∆ ⊂ h ∗ P ⊂ h ∗ R reduced root system as above, R weight Q ∨ = Z ∆ ∨ dual root lattice, lattice, h = h R ⊗ R C

  29. RDAHAs dDAHAs Algebraic KZ AKZ equations for root systems ∆ ⊂ h ∗ P ⊂ h ∗ R reduced root system as above, R weight Q ∨ = Z ∆ ∨ dual root lattice, lattice, h = h R ⊗ R C T ∨ = P ⊗ C × dual torus, C [ T ∨ ] = C [ z µ ; µ ∈ Q ∨ ]

  30. RDAHAs dDAHAs Algebraic KZ AKZ equations for root systems ∆ ⊂ h ∗ P ⊂ h ∗ R reduced root system as above, R weight Q ∨ = Z ∆ ∨ dual root lattice, lattice, h = h R ⊗ R C T ∨ = P ⊗ C × dual torus, C [ T ∨ ] = C [ z µ ; µ ∈ Q ∨ ] H gr − aff : graded affine Hecke W : Weyl group of ∆ , M : f.d. H gr − aff -module algebra for ∆ ,

  31. RDAHAs dDAHAs Algebraic KZ AKZ equations for root systems ∆ ⊂ h ∗ P ⊂ h ∗ R reduced root system as above, R weight Q ∨ = Z ∆ ∨ dual root lattice, lattice, h = h R ⊗ R C T ∨ = P ⊗ C × dual torus, C [ T ∨ ] = C [ z µ ; µ ∈ Q ∨ ] H gr − aff : graded affine Hecke W : Weyl group of ∆ , M : f.d. H gr − aff -module algebra for ∆ , AKZ equations Affine Knizhnik–Zamolodchikov (AKZ) equations are the following PDEs for analytic functions f : T ∨ → M � h α � ξ, α ∨ � 1 − s α 1 − z − α ∨ f − � ξ, ρ ∨ ∂ ξ ( f ) + ξ · f − h � f = 0 α ∈ ∆ + for ξ ∈ h ∗ . h = (1 / 2) � ρ ∨ α ∈ ∆ + h α α ∨ h α ∈ C : parameters,

  32. RDAHAs dDAHAs Algebraic KZ dDAHAs : definition AKZ equations : � h α � ξ, α ∨ � 1 − s α 1 − z − α ∨ f − � ξ, ρ ∨ ∂ ξ ( f ) + ξ · f − h � f = 0 α ∈ ∆ +

  33. RDAHAs dDAHAs Algebraic KZ dDAHAs : definition AKZ equations : � h α � ξ, α ∨ � 1 − s α 1 − z − α ∨ f − � ξ, ρ ∨ ∂ ξ ( f ) + ξ · f − h � f = 0 α ∈ ∆ + � � z ∈ T ∨ ; z α ∨ � = 1 , ∀ α ∈ ∆ Regular part : T ∨ ◦ =

  34. RDAHAs dDAHAs Algebraic KZ dDAHAs : definition AKZ equations : � h α � ξ, α ∨ � 1 − s α 1 − z − α ∨ f − � ξ, ρ ∨ ∂ ξ ( f ) + ξ · f − h � f = 0 α ∈ ∆ + � � z ∈ T ∨ ; z α ∨ � = 1 , ∀ α ∈ ∆ Regular part : T ∨ ◦ = D ( T ∨ ◦ ) : ring of algebraic differential operators on the affine variety T ∨ ◦ , acted on by W

  35. RDAHAs dDAHAs Algebraic KZ dDAHAs : definition AKZ equations : � h α � ξ, α ∨ � 1 − s α 1 − z − α ∨ f − � ξ, ρ ∨ ∂ ξ ( f ) + ξ · f − h � f = 0 α ∈ ∆ + � � z ∈ T ∨ ; z α ∨ � = 1 , ∀ α ∈ ∆ Regular part : T ∨ ◦ = D ( T ∨ ◦ ) : ring of algebraic differential operators on the affine variety T ∨ ◦ , acted on by W ◦ ) ⋊ C W for ξ ∈ h ∗ : Dunkl operator D ξ ∈ D ( T ∨ � h α � ξ, α ∨ � (1 − z − α ∨ ) − 1 (1 − s α ) + � ξ, ρ ∨ D ξ := ∂ ξ − h � α ∈ ∆ +

  36. RDAHAs dDAHAs Algebraic KZ dDAHAs : definition AKZ equations : � h α � ξ, α ∨ � 1 − s α 1 − z − α ∨ f − � ξ, ρ ∨ ∂ ξ ( f ) + ξ · f − h � f = 0 α ∈ ∆ + � � z ∈ T ∨ ; z α ∨ � = 1 , ∀ α ∈ ∆ Regular part : T ∨ ◦ = D ( T ∨ ◦ ) : ring of algebraic differential operators on the affine variety T ∨ ◦ , acted on by W ◦ ) ⋊ C W for ξ ∈ h ∗ : Dunkl operator D ξ ∈ D ( T ∨ � h α � ξ, α ∨ � (1 − z − α ∨ ) − 1 (1 − s α ) + � ξ, ρ ∨ D ξ := ∂ ξ − h � α ∈ ∆ + The degenerate double affine Hecke algebra (dDAHA), is the subalgebra H trig ⊂ D ( T ∨ ◦ ) ⋊ C W generated by C [ T ∨ ] , C W and D ξ for ξ ∈ h ∗ .

  37. RDAHAs dDAHAs Algebraic KZ dDAHAs : structure Dunkl operator : � h α � ξ, α ∨ � (1 − z − α ∨ ) − 1 (1 − s α )+ � ξ, ρ ∨ h � ∈ D ( T ∨ D ξ := ∂ ξ − ◦ ) ⋊ C W α ∈ ∆ +

  38. RDAHAs dDAHAs Algebraic KZ dDAHAs : structure Dunkl operator : � h α � ξ, α ∨ � (1 − z − α ∨ ) − 1 (1 − s α )+ � ξ, ρ ∨ h � ∈ D ( T ∨ D ξ := ∂ ξ − ◦ ) ⋊ C W α ∈ ∆ + [ D ξ , D ξ ′ ] = 0 , ∀ ξ, ξ ′ ∈ h ∗ . They generate a subalgebra C [ h ] = Sym h ∗ ⊂ H trig .

  39. RDAHAs dDAHAs Algebraic KZ dDAHAs : structure Dunkl operator : � h α � ξ, α ∨ � (1 − z − α ∨ ) − 1 (1 − s α )+ � ξ, ρ ∨ h � ∈ D ( T ∨ D ξ := ∂ ξ − ◦ ) ⋊ C W α ∈ ∆ + [ D ξ , D ξ ′ ] = 0 , ∀ ξ, ξ ′ ∈ h ∗ . They generate a subalgebra C [ h ] = Sym h ∗ ⊂ H trig . There is a subalgebra H gr − aff ∼ = C W ⊗ C [ h ] ⊂ H trig

  40. RDAHAs dDAHAs Algebraic KZ dDAHAs : structure Dunkl operator : � h α � ξ, α ∨ � (1 − z − α ∨ ) − 1 (1 − s α )+ � ξ, ρ ∨ h � ∈ D ( T ∨ D ξ := ∂ ξ − ◦ ) ⋊ C W α ∈ ∆ + [ D ξ , D ξ ′ ] = 0 , ∀ ξ, ξ ′ ∈ h ∗ . They generate a subalgebra C [ h ] = Sym h ∗ ⊂ H trig . There is a subalgebra H gr − aff ∼ = C W ⊗ C [ h ] ⊂ H trig Triangular decomposition H trig = C [ T ∨ ] ⊗ C W ⊗ C [ h ]

  41. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition Isomorphism ◦ ] ⊗ C [ T ∨ ] H trig ∼ C [ T ∨ = D ( T ∨ ◦ ) ⋊ C W =: H trig ( ∗ ) ◦

  42. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition Isomorphism ◦ ] ⊗ C [ T ∨ ] H trig ∼ C [ T ∨ = D ( T ∨ ◦ ) ⋊ C W =: H trig ( ∗ ) ◦ Given M : coherent H trig -module

  43. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition Isomorphism ◦ ] ⊗ C [ T ∨ ] H trig ∼ C [ T ∨ = D ( T ∨ ◦ ) ⋊ C W =: H trig ( ∗ ) ◦ Given M : coherent H trig -module M ◦ := H trig ⊗ H trig M : coherent H trig -module ◦ ◦

  44. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition Isomorphism ◦ ] ⊗ C [ T ∨ ] H trig ∼ C [ T ∨ = D ( T ∨ ◦ ) ⋊ C W =: H trig ( ∗ ) ◦ Given M : coherent H trig -module M ◦ := H trig ⊗ H trig M : coherent H trig -module ◦ ◦ Via ( ∗ ), M ◦ is W -equivariant coherent D ( T ∨ ◦ ) -module

  45. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition Isomorphism ◦ ] ⊗ C [ T ∨ ] H trig ∼ C [ T ∨ = D ( T ∨ ◦ ) ⋊ C W =: H trig ( ∗ ) ◦ Given M : coherent H trig -module M ◦ := H trig ⊗ H trig M : coherent H trig -module ◦ ◦ Via ( ∗ ), M ◦ is W -equivariant coherent D ( T ∨ ◦ ) -module Suppose D ξ acts locally finitely on M for ξ ∈ h ∗ .

  46. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition Isomorphism ◦ ] ⊗ C [ T ∨ ] H trig ∼ C [ T ∨ = D ( T ∨ ◦ ) ⋊ C W =: H trig ( ∗ ) ◦ Given M : coherent H trig -module M ◦ := H trig ⊗ H trig M : coherent H trig -module ◦ ◦ Via ( ∗ ), M ◦ is W -equivariant coherent D ( T ∨ ◦ ) -module Suppose D ξ acts locally finitely on M for ξ ∈ h ∗ . M ◦ is a W -equivariant local system on T ∨ ◦

  47. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition Isomorphism ◦ ] ⊗ C [ T ∨ ] H trig ∼ C [ T ∨ = D ( T ∨ ◦ ) ⋊ C W =: H trig ( ∗ ) ◦ Given M : coherent H trig -module M ◦ := H trig ⊗ H trig M : coherent H trig -module ◦ ◦ Via ( ∗ ), M ◦ is W -equivariant coherent D ( T ∨ ◦ ) -module Suppose D ξ acts locally finitely on M for ξ ∈ h ∗ . M ◦ is a W -equivariant local system on T ∨ ◦ flat sections of M ◦ form a π 1 ([ T ∨ ◦ /W ]) -module, denoted M ∇

  48. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition Isomorphism ◦ ] ⊗ C [ T ∨ ] H trig ∼ C [ T ∨ = D ( T ∨ ◦ ) ⋊ C W =: H trig ( ∗ ) ◦ Given M : coherent H trig -module M ◦ := H trig ⊗ H trig M : coherent H trig -module ◦ ◦ Via ( ∗ ), M ◦ is W -equivariant coherent D ( T ∨ ◦ ) -module Suppose D ξ acts locally finitely on M for ξ ∈ h ∗ . M ◦ is a W -equivariant local system on T ∨ ◦ flat sections of M ◦ form a π 1 ([ T ∨ ◦ /W ]) -module, denoted M ∇ ◦ /W ]) ∼ = ˜ orbifold fundamental group π 1 ([ T ∨ B W , (extended) affine braid group

  49. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition Isomorphism ◦ ] ⊗ C [ T ∨ ] H trig ∼ C [ T ∨ = D ( T ∨ ◦ ) ⋊ C W =: H trig ( ∗ ) ◦ Given M : coherent H trig -module M ◦ := H trig ⊗ H trig M : coherent H trig -module ◦ ◦ Via ( ∗ ), M ◦ is W -equivariant coherent D ( T ∨ ◦ ) -module Suppose D ξ acts locally finitely on M for ξ ∈ h ∗ . M ◦ is a W -equivariant local system on T ∨ ◦ flat sections of M ◦ form a π 1 ([ T ∨ ◦ /W ]) -module, denoted M ∇ ◦ /W ]) ∼ = ˜ orbifold fundamental group π 1 ([ T ∨ B W , (extended) affine braid group B W -action on M ∇ factorises through H aff , (extended) ˜ affine Hecke algebra for ∆

  50. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition (cont.) O ( H trig ) : category of coherent H trig -modules on which D ξ acts locally finitely for ξ ∈ h ∗

  51. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition (cont.) O ( H trig ) : category of coherent H trig -modules on which D ξ acts locally finitely for ξ ∈ h ∗ O ( H aff ) : category of f.d. H aff -modules

  52. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition (cont.) O ( H trig ) : category of coherent H trig -modules on which D ξ acts locally finitely for ξ ∈ h ∗ O ( H aff ) : category of f.d. H aff -modules KZ functor [Varagnolo–Vasserot ’04] The KZ functor V : O ( H trig ) → O ( H aff ) is defined by the assignement O ( H trig ) ∋ M �→ M ∇ ∈ O ( H aff ) .

  53. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition (cont.) O ( H trig ) : category of coherent H trig -modules on which D ξ acts locally finitely for ξ ∈ h ∗ O ( H aff ) : category of f.d. H aff -modules KZ functor [Varagnolo–Vasserot ’04] The KZ functor V : O ( H trig ) → O ( H aff ) is defined by the assignement O ( H trig ) ∋ M �→ M ∇ ∈ O ( H aff ) . Parameters are given by v α = exp( π √− 1 h α )

  54. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : definition (cont.) O ( H trig ) : category of coherent H trig -modules on which D ξ acts locally finitely for ξ ∈ h ∗ O ( H aff ) : category of f.d. H aff -modules KZ functor [Varagnolo–Vasserot ’04] The KZ functor V : O ( H trig ) → O ( H aff ) is defined by the assignement O ( H trig ) ∋ M �→ M ∇ ∈ O ( H aff ) . Parameters are given by v α = exp( π √− 1 h α ) This also works for non-reduced root systems

  55. RDAHA v.s. dDAHA

  56. RDAHAs dDAHAs Algebraic KZ Recapitulation H rat H trig

  57. RDAHAs dDAHAs Algebraic KZ Recapitulation H rat H trig ∂ ξ ( f ) − � α h α � ξ, α ∨ � 1 − s α KZ eq α ∨ f = 0 ∂ ξ ( f ) + ξ · f − � 1 − s α α h α � ξ, α ∨ � 1 − z − α ∨ f + � ξ, ρ ∨ h � f = 0

  58. RDAHAs dDAHAs Algebraic KZ Recapitulation H rat H trig ∂ ξ ( f ) − � α h α � ξ, α ∨ � 1 − s α KZ eq α ∨ f = 0 ∂ ξ ( f ) + ξ · f − � 1 − s α α h α � ξ, α ∨ � 1 − z − α ∨ f + � ξ, ρ ∨ h � f = 0 f.d. H gr − aff -mod coeffs f.d. C W -mod

  59. RDAHAs dDAHAs Algebraic KZ Recapitulation H rat H trig ∂ ξ ( f ) − � α h α � ξ, α ∨ � 1 − s α KZ eq α ∨ f = 0 ∂ ξ ( f ) + ξ · f − � 1 − s α α h α � ξ, α ∨ � 1 − z − α ∨ f + � ξ, ρ ∨ h � f = 0 f.d. H gr − aff -mod coeffs f.d. C W -mod h ∗ [ T ∨ over ◦ /W ◦ /W ]

  60. RDAHAs dDAHAs Algebraic KZ Recapitulation H rat H trig ∂ ξ ( f ) − � α h α � ξ, α ∨ � 1 − s α KZ eq α ∨ f = 0 ∂ ξ ( f ) + ξ · f − � 1 − s α α h α � ξ, α ∨ � 1 − z − α ∨ f + � ξ, ρ ∨ h � f = 0 f.d. H gr − aff -mod coeffs f.d. C W -mod h ∗ [ T ∨ over ◦ /W ◦ /W ] f.d. H aff -mod mndrmy f.d. H W -mod

  61. RDAHAs dDAHAs Algebraic KZ Recapitulation H rat H trig ∂ ξ ( f ) − � α h α � ξ, α ∨ � 1 − s α KZ eq α ∨ f = 0 ∂ ξ ( f ) + ξ · f − � 1 − s α α h α � ξ, α ∨ � 1 − z − α ∨ f + � ξ, ρ ∨ h � f = 0 f.d. H gr − aff -mod coeffs f.d. C W -mod h ∗ [ T ∨ over ◦ /W ◦ /W ] f.d. H aff -mod mndrmy f.d. H W -mod h ∗ -loc. nilp. h ∗ -loc. fin. O

  62. RDAHAs dDAHAs Algebraic KZ Recapitulation H rat H trig ∂ ξ ( f ) − � α h α � ξ, α ∨ � 1 − s α KZ eq α ∨ f = 0 ∂ ξ ( f ) + ξ · f − � 1 − s α α h α � ξ, α ∨ � 1 − z − α ∨ f + � ξ, ρ ∨ h � f = 0 f.d. H gr − aff -mod coeffs f.d. C W -mod h ∗ [ T ∨ over ◦ /W ◦ /W ] f.d. H aff -mod mndrmy f.d. H W -mod h ∗ -loc. nilp. h ∗ -loc. fin. O O ( H rat ) → H W -mod O ( H trig ) → O ( H aff ) V :

  63. Coming back to dDAHAs...

  64. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : properties KZ functor V : O ( H trig ) → O ( H aff ) V ( M ) = M ∇

  65. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : properties KZ functor V : O ( H trig ) → O ( H aff ) V ( M ) = M ∇ Theorem [L.] 1 V is a quotient functor of abelian categories, inducing equivalence O ( H trig ) / ker V ∼ = O ( H aff )

  66. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : properties KZ functor V : O ( H trig ) → O ( H aff ) V ( M ) = M ∇ Theorem [L.] 1 V is a quotient functor of abelian categories, inducing equivalence O ( H trig ) / ker V ∼ = O ( H aff ) 2 V satisfies the double centraliser property, i.e. V is fully faithful on projective objects of O ( H trig )

  67. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : properties KZ functor V : O ( H trig ) → O ( H aff ) V ( M ) = M ∇ Theorem [L.] 1 V is a quotient functor of abelian categories, inducing equivalence O ( H trig ) / ker V ∼ = O ( H aff ) 2 V satisfies the double centraliser property, i.e. V is fully faithful on projective objects of the completion of O ( H trig )

  68. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : properties KZ functor V : O ( H trig ) → O ( H aff ) V ( M ) = M ∇ Theorem [L.] 1 V is a quotient functor of abelian categories, inducing equivalence O ( H trig ) / ker V ∼ = O ( H aff ) 2 V satisfies the double centraliser property, i.e. V is fully faithful on projective objects of the completion of O ( H trig ) 3 L ∈ O ( H trig ) : simple module, P L ∈ O ( H trig ) : projective cover of L . Then L ∈ ker V ⇔ P L is not injective

  69. RDAHAs dDAHAs Algebraic KZ KZ functor for dDAHAs : properties KZ functor V : O ( H trig ) → O ( H aff ) V ( M ) = M ∇ Theorem [L.] 1 V is a quotient functor of abelian categories, inducing equivalence O ( H trig ) / ker V ∼ = O ( H aff ) 2 V satisfies the double centraliser property, i.e. V is fully faithful on projective objects of the completion of O ( H trig ) 3 L ∈ O ( H trig ) : simple module, P L ∈ Pro O ( H trig ) : projective cover of L . Then L ∈ ker V ⇔ P L is not relatively injective / categorical centre

  70. RDAHAs dDAHAs Algebraic KZ Example : SL2 W = � s ; s 2 = e � . h R = R · ϵ , ∆ = {± α } , � α, ϵ � = 1 ,

  71. RDAHAs dDAHAs Algebraic KZ Example : SL2 W = � s ; s 2 = e � . h R = R · ϵ , ∆ = {± α } , � α, ϵ � = 1 , Q ∨ = Z · (2 ϵ ) , T ∨ = C [ z ± 2 ϵ ] . P = Z · ( α/ 2) ,

  72. RDAHAs dDAHAs Algebraic KZ Example : SL2 W = � s ; s 2 = e � . h R = R · ϵ , ∆ = {± α } , � α, ϵ � = 1 , Q ∨ = Z · (2 ϵ ) , T ∨ = C [ z ± 2 ϵ ] . P = Z · ( α/ 2) , Let y = z 2 ϵ . AKZ : y d dyf + α · f − 2 h 1 − s 1 − y − 1 f − h · f = 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend