zamolodchikov periodicity and integrability
play

Zamolodchikov periodicity and integrability Pavel Galashin MIT - PowerPoint PPT Presentation

Zamolodchikov periodicity and integrability Pavel Galashin MIT galashin@mit.edu UCLA, October 26, 2018 Joint work with Pavlo Pylyavskyy 2 2 2 1 1 2 2 3 2 2 2 1 2 Pavel Galashin (MIT) Zamolodchikov periodicity and integrability


  1. (affine, finite) quivers “(affine, finite) quiver” Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 17 / 40

  2. (affine, finite) quivers • Bipartite recurrent quiver “(affine, finite) quiver” Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 17 / 40

  3. (affine, finite) quivers • Bipartite recurrent quiver • All red components are affine Dynkin diagrams “(affine, finite) quiver” Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 17 / 40

  4. (affine, finite) quivers • Bipartite recurrent quiver • All red components are affine Dynkin diagrams • All blue components are finite Dynkin diagrams “(affine, finite) quiver” Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 17 / 40

  5. (affine, finite) quivers • Bipartite recurrent quiver • All red components are affine Dynkin diagrams • All blue components are finite Dynkin diagrams “ (affine, finite) quiver” Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 17 / 40

  6. Four classes of quivers “(finite, finite)” “(affine, finite)” “(affine, affine)” “wild” grows as grows as periodic linearizable exp( t 2 ) exp(exp( t )) Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 18 / 40

  7. Master conjecture Conjecture (G.-Pylyavskyy, 2016) Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 19 / 40

  8. Master conjecture Conjecture (G.-Pylyavskyy, 2016) (finite, finite) ⇐ ⇒ periodic Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 19 / 40

  9. Master conjecture Conjecture (G.-Pylyavskyy, 2016) (finite, finite) ⇐ ⇒ periodic (affine, finite) ⇐ ⇒ linearizable, but not periodic Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 19 / 40

  10. Master conjecture Conjecture (G.-Pylyavskyy, 2016) (finite, finite) ⇐ ⇒ periodic (affine, finite) ⇐ ⇒ linearizable, but not periodic ⇒ grows as exp( t 2 ) (affine, affine) ⇐ Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 19 / 40

  11. Master conjecture Conjecture (G.-Pylyavskyy, 2016) (finite, finite) ⇐ ⇒ periodic (affine, finite) ⇐ ⇒ linearizable, but not periodic ⇒ grows as exp( t 2 ) (affine, affine) ⇐ wild ⇐ ⇒ grows as exp(exp( t )) Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 19 / 40

  12. Results Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 20 / 40

  13. Results Theorem (G.-Pylyavskyy, 2016) Periodic ⇐ ⇒ (finite, finite) Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 20 / 40

  14. Results Theorem (G.-Pylyavskyy, 2016) Periodic ⇐ ⇒ (finite, finite) Theorem (G.-Pylyavskyy, 2016) Linearizable = ⇒ (affine, finite) or (finite, finite) Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 20 / 40

  15. Results Theorem (G.-Pylyavskyy, 2016) Periodic ⇐ ⇒ (finite, finite) Theorem (G.-Pylyavskyy, 2016) Linearizable = ⇒ (affine, finite) or (finite, finite) Theorem (G.-Pylyavskyy, 2017) Grows slower than exp(exp( t )) = ⇒ (affine, affine), (affine, finite), or (finite, finite) Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 20 / 40

  16. Results Theorem (G.-Pylyavskyy, 2016) Periodic ⇐ ⇒ (finite, finite) Theorem (G.-Pylyavskyy, 2016) Linearizable = ⇒ (affine, finite) or (finite, finite) Theorem (G.-Pylyavskyy, 2017) Grows slower than exp(exp( t )) = ⇒ (affine, affine), (affine, finite), or (finite, finite) What is left: Conjecture (G.-Pylyavskyy, 2017) (affine, finite) = ⇒ linearizable ⇒ grows as exp( t 2 ) (affine, affine) = Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 20 / 40

  17. Tensor product D 5 ⊗ A 3 Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 21 / 40

  18. Tensor product D 5 ⊗ A 3 Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 21 / 40

  19. Tensor product D 5 ⊗ A 3 Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 21 / 40

  20. Zamolodchikov periodicity Theorem (B. Keller, 2013) Tensor product of finite Dynkin diagrams = ⇒ the T-system is periodic. Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 22 / 40

  21. Zamolodchikov periodicity Theorem (B. Keller, 2013) Tensor product of finite Dynkin diagrams = ⇒ the T-system is periodic. Zamolodchikov (1991): Λ ⊗ A 1 (conjectured); Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 22 / 40

  22. Zamolodchikov periodicity Theorem (B. Keller, 2013) Tensor product of finite Dynkin diagrams = ⇒ the T-system is periodic. Zamolodchikov (1991): Λ ⊗ A 1 (conjectured); Ravanini-Tateo-Valleriani (1993): Λ ⊗ Λ ′ (conjectured); Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 22 / 40

  23. Zamolodchikov periodicity Theorem (B. Keller, 2013) Tensor product of finite Dynkin diagrams = ⇒ the T-system is periodic. Zamolodchikov (1991): Λ ⊗ A 1 (conjectured); Ravanini-Tateo-Valleriani (1993): Λ ⊗ Λ ′ (conjectured); Frenkel-Szenes (1995): A n ⊗ A 1 ; Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 22 / 40

  24. Zamolodchikov periodicity Theorem (B. Keller, 2013) Tensor product of finite Dynkin diagrams = ⇒ the T-system is periodic. Zamolodchikov (1991): Λ ⊗ A 1 (conjectured); Ravanini-Tateo-Valleriani (1993): Λ ⊗ Λ ′ (conjectured); Frenkel-Szenes (1995): A n ⊗ A 1 ; Fomin-Zelevinsky (2003): Λ ⊗ A 1 ; Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 22 / 40

  25. Zamolodchikov periodicity Theorem (B. Keller, 2013) Tensor product of finite Dynkin diagrams = ⇒ the T-system is periodic. Zamolodchikov (1991): Λ ⊗ A 1 (conjectured); Ravanini-Tateo-Valleriani (1993): Λ ⊗ Λ ′ (conjectured); Frenkel-Szenes (1995): A n ⊗ A 1 ; Fomin-Zelevinsky (2003): Λ ⊗ A 1 ; Volkov (2005): A n ⊗ A m ; Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 22 / 40

  26. Zamolodchikov periodicity Theorem (B. Keller, 2013) Tensor product of finite Dynkin diagrams = ⇒ the T-system is periodic. Zamolodchikov (1991): Λ ⊗ A 1 (conjectured); Ravanini-Tateo-Valleriani (1993): Λ ⊗ Λ ′ (conjectured); Frenkel-Szenes (1995): A n ⊗ A 1 ; Fomin-Zelevinsky (2003): Λ ⊗ A 1 ; Volkov (2005): A n ⊗ A m ; Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 22 / 40

  27. History of cluster algebras Cluster algebras were invented by Fomin–Zelevinsky in 2000. Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 23 / 40

  28. History of cluster algebras Cluster algebras were invented by Fomin–Zelevinsky in 2000. Motivation: Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 23 / 40

  29. History of cluster algebras Cluster algebras were invented by Fomin–Zelevinsky in 2000. Motivation: Lusztig’s canonical bases Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 23 / 40

  30. History of cluster algebras Cluster algebras were invented by Fomin–Zelevinsky in 2000. Motivation: Lusztig’s canonical bases Total positivity Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 23 / 40

  31. History of cluster algebras Cluster algebras were invented by Fomin–Zelevinsky in 2000. Motivation: Lusztig’s canonical bases Total positivity Zamolodchikov periodicity Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 23 / 40

  32. History of cluster algebras Cluster algebras were invented by Fomin–Zelevinsky in 2000. Motivation: Lusztig’s canonical bases Total positivity Zamolodchikov periodicity Definition A cluster algebra is of finite type if it has finitely many cluster variables. Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 23 / 40

  33. History of cluster algebras Cluster algebras were invented by Fomin–Zelevinsky in 2000. Motivation: Lusztig’s canonical bases Total positivity Zamolodchikov periodicity Definition A cluster algebra is of finite type if it has finitely many cluster variables. Theorem (Fomin–Zelevinsky (2003)) → finite Dynkin diagrams ← Cluster algebras of finite type Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 23 / 40

  34. History of cluster algebras Cluster algebras were invented by Fomin–Zelevinsky in 2000. Motivation: Lusztig’s canonical bases Total positivity Zamolodchikov periodicity Definition A cluster algebra is of finite type if it has finitely many cluster variables. Theorem (Fomin–Zelevinsky (2003)) → finite Dynkin diagrams ← Cluster algebras of finite type → finite root systems Φ ← Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 23 / 40

  35. History of cluster algebras Cluster algebras were invented by Fomin–Zelevinsky in 2000. Motivation: Lusztig’s canonical bases Total positivity Zamolodchikov periodicity Definition A cluster algebra is of finite type if it has finitely many cluster variables. Theorem (Fomin–Zelevinsky (2003)) → finite Dynkin diagrams ← Cluster algebras of finite type → finite root systems Φ ← Cluster variables ↔ almost positive roots Φ ≥− 1 := Φ + ⊔ ( − Π) Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 23 / 40

  36. History of cluster algebras Cluster algebras were invented by Fomin–Zelevinsky in 2000. Motivation: Lusztig’s canonical bases Total positivity Zamolodchikov periodicity Definition A cluster algebra is of finite type if it has finitely many cluster variables. Theorem (Fomin–Zelevinsky (2003)) → finite Dynkin diagrams ← Cluster algebras of finite type → finite root systems Φ ← Cluster variables ↔ almost positive roots Φ ≥− 1 := Φ + ⊔ ( − Π) Explicitly, the above bijection sends α ∈ Φ ≥− 1 to the unique cluster variable with denominator x α . Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 23 / 40

  37. History of cluster algebras Theorem (Fomin–Zelevinsky (2003)) → finite Dynkin diagrams ← Cluster algebras of finite type → finite root systems Φ ← Cluster variables ↔ almost positive roots Φ ≥− 1 := Φ + ⊔ ( − Π) Explicitly, the above bijection sends α ∈ Φ ≥− 1 to the unique cluster variable with denominator x α . Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 23 / 40

  38. History of cluster algebras Theorem (Fomin–Zelevinsky (2003)) → finite Dynkin diagrams ← Cluster algebras of finite type → finite root systems Φ ← Cluster variables ↔ almost positive roots Φ ≥− 1 := Φ + ⊔ ( − Π) Explicitly, the above bijection sends α ∈ Φ ≥− 1 to the unique cluster variable with denominator x α . Theorem (Fomin–Zelevinsky (2003)) Zamolodchikov periodicity conjecture holds for Λ ⊗ A 1 . Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 23 / 40

  39. History of cluster algebras Theorem (Fomin–Zelevinsky (2003)) → finite Dynkin diagrams ← Cluster algebras of finite type → finite root systems Φ ← Cluster variables ↔ almost positive roots Φ ≥− 1 := Φ + ⊔ ( − Π) Explicitly, the above bijection sends α ∈ Φ ≥− 1 to the unique cluster variable with denominator x α . Theorem (Fomin–Zelevinsky (2003)) Zamolodchikov periodicity conjecture holds for Λ ⊗ A 1 . Proof. Use the above bijection and then prove periodicity for the tropical dynamics on Φ ≥− 1 . Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 23 / 40

  40. Example: A 2 x 1 x 2 Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 24 / 40

  41. Example: A 2 x 1 x 2 x 1 Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 24 / 40

  42. Example: A 2 x 1 x 2 x 1 x 2 Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 24 / 40

  43. Example: A 2 x 1 x 2 x 1 x 2 x 2 + 1 x 1 Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 24 / 40

  44. Example: A 2 x 1 x 2 x 1 x 2 x 2 + 1 x 1 x 1 + x 2 + 1 x 1 x 2 Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 24 / 40

  45. Example: A 2 x 1 x 2 x 1 x 2 x 2 + 1 x 1 x 1 + x 2 + 1 x 1 x 2 x 1 + 1 x 2 Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 24 / 40

  46. Example: A 2 x 1 x 2 x 1 x 2 x 2 + 1 x 1 x 1 + x 2 + 1 x 1 x 2 x 1 + 1 x 2 x 1 Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 24 / 40

  47. Example: A 2 x 1 x 2 x 1 x 2 x 2 + 1 x 1 x 1 + x 2 + 1 x 1 x 2 x 1 + 1 x 2 x 1 x 2 Pavel Galashin (MIT) Zamolodchikov periodicity and integrability UCLA, 10/26/2018 24 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend