a preorder free construction of the kazhdan lusztig
play

A preorder-free construction of the Kazhdan-Lusztig representations - PowerPoint PPT Presentation

A preorder-free construction of the Kazhdan-Lusztig representations of Hecke algebras H n ( q ) of symmetric groups Charles Buehrle and Mark Skandera Department of Mathematics Lehigh University August 2010 The Hecke algebra, H n ( q ) 1 1 2


  1. A preorder-free construction of the Kazhdan-Lusztig representations of Hecke algebras H n ( q ) of symmetric groups Charles Buehrle and Mark Skandera Department of Mathematics Lehigh University August 2010

  2. The Hecke algebra, H n ( q ) 1 ¯ 1 2 ]-algebra generated by { � 2 , q C [ q T s i | 1 ≤ i ≤ n − 1 } with relations 1 ¯ 1 T 2 � 2 ) � T s i + � 2 − q s i = ( q T e , 1 ≤ i ≤ n − 1 T s i � � T s j � T s i = � T s j � T s i � T s j , | i − j | = 1 T s i � � T s j = � T s j � T s i , | i − j | ≥ 2 . The natural basis of H n ( q ) is the set { � T v = � T s i 1 · · · � T s i ℓ ( v ) | v ∈ S n } . Notice that H n (1) ∼ = C [ S n ]. For a v ∈ S n let P ( v ) , Q ( v ) be the tableaux obtained from Robinson-Schensted column insertion.

  3. The Kazhdan-Lusztig basis of H n ( q ) In [Kazhdan and Lusztig, 1979] a certain basis of H n ( q ) is defined for each v ∈ S n to be � 1 2 ) ℓ ( v ) − ℓ ( u ) P u , v ( q ) � C ′ v = ( q T u , u ≤ v where P u , v ( q ) are the Kazhdan-Lusztig polynomials. Although, P u , v ( q ) ∈ N [ q ] there is no simple combinatorial description of the coefficients.

  4. � � � � � � � Kazhdan-Lusztig preorders on H n ( q ) Kazhdan-Lusztig preorders help to construct representations. Right preorder T w = � u � ◮ v ⋖ R u if a v � = 0 in C ′ z ∈ S n a z C ′ z , for some w . ◮ The right preorder ≤ R is the transitive closure of ⋖ R . Example For S 3 the Hasse diagram of the right preorder is 123 � ���������������� � � �������� � � � � � � � � � � � � � � � � � � � � � � � � 312 213 231 132 � ���������������� � �������� � � � � � � � � � � � � � � � � � � � � � � � � 321

  5. Kazhdan-Lusztig representations of H n ( q ) For λ ⊢ n choose a standard λ -tableau, T , and v such that Q ( v ) = T . Define K λ span { C ′ = u | Q ( u ) = T } span { C ′ u | u ≤ R v } / span { C ′ = u | u < R v } , def where u < R v means u ≤ R v �≤ R u . Matrix representations of H n ( q ) are obtained by right multiplication of � T s i on the “basis”. 1 ¯ 1 X λ 2 ]) d ) K : H n ( q ) → End (( C [ q 2 , q Example � � � � ¯ 1 1 − q 1 0 q 2 2 X (2 , 1) X (2 , 1) ( � ( � T s 1 ) = T s 2 ) = 1 ¯ 1 K K 0 q 1 − q 2 2

  6. Kazhdan-Lusztig representation of H 3 ( q ) Choose λ = (2 , 1) and tableau T = 1 2 . 3 So we have that K λ = span { C ′ 213 , C ′ 312 } . ¯ 1 213 � C ′ 2 C ′ T s 1 = − q 213 1 312 � C ′ 2 C ′ 312 + C ′ 321 + C ′ = 213 . T s 1 q C ′ 321 is not in our spanning set! But, 321 < R 312. So we can ignore C ′ 321 due to the quotient. Thus � � ¯ 1 − q 1 2 X λ K ( � T s 1 ) = . 1 0 q 2

  7. Quantum polynomial ring 1 ¯ 1 Define A ( n ; q ) = C [ q 2 , q 2 ] � x 1 , 1 , . . . , x n , n � , modulo x i ,ℓ x j , k = x j , k x i ,ℓ , 1 2 x i , k x i ,ℓ , x i ,ℓ x i , k = q 1 2 x i , k x j , k , x j , k x i , k = q 1 ¯ 1 2 − q 2 ) x i ,ℓ x j , k , x j ,ℓ x i , k = x i , k x j ,ℓ + ( q for 1 ≤ i < j ≤ n ,1 ≤ k < ℓ ≤ n . The relations can be remembered using the 2 × 2 submatrix � x i , k � x i ,ℓ x j , k x j ,ℓ

  8. The immanant space and Kazhdan-Lusztig immanants Convenient monomial notation: x v , w = x v 1 , w 1 · · · x v n , w n . The immanant space span { x e , v | v ∈ S n } an n ! dimensional subspace of A ( n ; q ). In [Du, 1992] a dual canonical basis called Kazhdan-Lusztig immanants was defined for each u ∈ S n � 1 2 ) ℓ ( u ) − ℓ ( v ) P w 0 u , w 0 v ( q ) x e , v , Imm u ( x ) = ( − q v ≥ u where P w 0 u , w 0 v ( q ) are the inverse Kazhdan-Lusztig polynomials.

  9. Generalized submatrices For n -element multisets of [ n ] L = ( ℓ (1) , . . . , ℓ ( n )) and M = ( m (1) , . . . , m ( n )) define   x ℓ (1) , m (1) · · · x ℓ (1) , m ( n )  . .  ... . . x L , M =  .  . . · · · x ℓ ( n ) , m (1) x ℓ ( n ) , m ( n ) Example L = (1 , 1 , 2) and M = (2 , 3 , 3)   x 1 , 2 x 1 , 3 x 1 , 3   . x L , M = x 1 , 2 x 1 , 3 x 1 , 3 x 2 , 2 x 2 , 3 x 2 , 3

  10. Kazhdan-Lusztig representations of H n ( q ) , again For λ ⊢ n choose a standard λ -tableau, T , and v such that Q ( v ) = T . Define V λ = span { Imm u ( x ) | Q ( u ) = T } = span { Imm u ( x ) | u ≥ R v } / span { Imm u ( x ) | u > R v } . def H n ( q ) acts on V λ by � T u acting on the monomial basis { x e , v | v ∈ S n } . 1 ¯ 1 X λ 2 , q 2 ]) d ) V : H n ( q ) → End (( C [ q Theorem For any h ∈ H n ( q ) , X λ V ( h ) = X λ K ( h ) .

  11. Kazhdan-Lusztig representation of H 3 ( q ) , again Choose λ = (2 , 1) and tableau T = 1 2 . 3 So we have that V λ = span { Imm 312 ( x ) , Imm 213 ( x ) } . ¯ 1 Imm 312 ( x ) � 2 Imm 312 ( x ) = − q T s 1 1 Imm 213 ( x ) � 2 Imm 213 ( x ) + Imm 123 ( x ) + Imm 312 ( x ) . T s 1 = q Imm 123 ( x ) is not in our spanning set! 213 < R 123. So we can ignore Imm 123 ( x ) due to the quotient. Thus � � ¯ 1 − q 1 2 V ( � X λ T s 1 ) = . 1 0 q 2

  12. Vanishing of Kazhdan-Lusztig immanants Let L an n -element multiset of [ n ]. Theorem If ℓ ( i ) = ℓ ( i + 1) in L and s i u > u then Imm u ( x L , [ n ] ) = 0 . For n × n matrix A µ ( A ) = row multiplicity partition of A . Dominance order of partitions, λ � µ if � k i =1 λ i ≤ � k i =1 µ i , for all k . Theorem If sh ( u ) � µ ( x L , [ n ] ) then Imm u ( x L , [ n ] ) = 0 . These results are quantum analogues to results in [Rhoades and Skandera, 2009].

  13. Quotient-free Kazhdan-Lusztig representations of H n ( q ) For λ ⊢ n , define the multiset L = (1 λ 1 , . . . , n λ n ). Define W λ = span { Imm u ( x L , [ n ] ) | Q ( u ) = T ( λ ) } . Matrix representations obtained by the action of H n ( q ) on basis of W λ . 1 ¯ 1 X λ 2 , q 2 ]) d ) W : H n ( q ) → End (( C [ q Theorem For any h ∈ H n ( q ) , X λ W ( h ) = X λ V ( h ) = X λ K ( h ) . This result is the H n ( q ) analog of a result in [B. and Skandera, 2010].

  14. Quotient-free Kazhdan-Lusztig representation of H 3 ( q ) Choose λ = (2 , 1). We have that W λ = span { Imm 312 ( x 112 , 123 ) , Imm 213 ( x 112 , 123 ) } . ¯ 1 Imm 312 ( x 112 , 123 ) � 2 Imm 312 ( x 112 , 123 ) T s 1 = − q 1 Imm 213 ( x 112 , 123 ) � 2 Imm 213 ( x 112 , 123 ) + Imm 312 ( x 112 , 123 ) T s 1 = q + Imm 123 ( x 112 , 123 ) . sh (123) = (1 , 1 , 1) ≺ µ ( x 112 , 123 ) = (2 , 1). So Imm 123 ( x 112 , 123 ) = 0. Thus � � ¯ 1 − q 1 2 W ( � X λ T s 1 ) = . 1 0 q 2

  15. Thank You B. and S. Relations between the Clausen and Kazhdan-Lusztig representations of the symmetric group. To appear in J. Pure Appl. Algebra , 2010. Michael Clausen Multivariate polynomials, standard tableaux, and representations of symmetric groups J. Symbolic Comput. , 11:483–522, 1991. J. Du Canonical bases for irreducible representations of quantum GL n . Bull. London Math. Soc. , 24(4):325-334, 1992. D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math. , 53:165–184, 1979. B. Rhoades and S. Bitableaux and the dual canonical basis of the polynomial ring. To appear in Adv. in Math. , 2009.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend