stratifications of affine deligne lusztig varieties
play

Stratifications of affine Deligne-Lusztig varieties Defjnition - PowerPoint PPT Presentation

Ulrich Grtz Sydney, August 9, 2019 Stratifications of affine Deligne-Lusztig varieties Defjnition (DeligneLusztig variety) Fix . We set . Properties locally closed in , smooth of dimension , acts on , hence on . Classical


  1. Ulrich Görtz Sydney, August 9, 2019 Stratifications of affine Deligne-Lusztig varieties

  2. Defjnition (Deligne–Lusztig variety) Fix . We set . Properties locally closed in , smooth of dimension , acts on , hence on . Classical Deligne-Lusztig varieties G 0 connected reductive group / fjnite fjeld F q , T 0 ⊂ B 0 ⊂ G 0 . G base change to F q , B , W , Frobenius σ acts on G , W , …

  3. Defjnition (Deligne–Lusztig variety) Properties locally closed in , smooth of dimension , acts on , hence on . Classical Deligne-Lusztig varieties G 0 connected reductive group / fjnite fjeld F q , T 0 ⊂ B 0 ⊂ G 0 . G base change to F q , B , W , Frobenius σ acts on G , W , … Fix w ∈ W . We set X w = { g ∈ G / B ; g − 1 σ ( g ) ∈ BwB } .

  4. Defjnition (Deligne–Lusztig variety) Properties Classical Deligne-Lusztig varieties G 0 connected reductive group / fjnite fjeld F q , T 0 ⊂ B 0 ⊂ G 0 . G base change to F q , B , W , Frobenius σ acts on G , W , … Fix w ∈ W . We set X w = { g ∈ G / B ; g − 1 σ ( g ) ∈ BwB } . locally closed in G / B , smooth of dimension ℓ ( w ) , G 0 ( F q ) acts on X w , hence on H ∗ ( X w , Q ℓ ) .

  5. (‘positive’) affjne fmag variety fjxed rational Iwahori subgroup, . , Let Defjnition (Affjne Deligne–Lusztig variety – Rapoport) simple affjne refmections Iwahori–Weyl group, G , G quasi-simple connected reductive group over Frobenius , Setup, affine DL varieties (equal characteristic: F = F q (( t )) , F local fjeld mixed characteristic: F / Q p fjnite).

  6. (‘positive’) affjne fmag variety G . , Let Defjnition (Affjne Deligne–Lusztig variety – Rapoport) simple affjne refmections Iwahori–Weyl group, fjxed rational Iwahori subgroup, , G quasi-simple connected reductive group over Setup, affine DL varieties (equal characteristic: F = F q (( t )) , F local fjeld mixed characteristic: F / Q p fjnite). σ : � a i t i �→ � a q ˘ i t i Frobenius F = F q (( t )) ,

  7. (‘positive’) affjne fmag variety fjxed rational Iwahori subgroup, . , Let Defjnition (Affjne Deligne–Lusztig variety – Rapoport) simple affjne refmections Iwahori–Weyl group, Setup, affine DL varieties (equal characteristic: F = F q (( t )) , F local fjeld mixed characteristic: F / Q p fjnite). σ : � a i t i �→ � a q ˘ i t i Frobenius F = F q (( t )) , G = G ( ˘ ˘ G quasi-simple connected reductive group over F , F )

  8. (‘positive’) affjne fmag variety Defjnition (Affjne Deligne–Lusztig variety – Rapoport) . , Let Setup, affine DL varieties (equal characteristic: F = F q (( t )) , F local fjeld mixed characteristic: F / Q p fjnite). σ : � a i t i �→ � a q ˘ i t i Frobenius F = F q (( t )) , G = G ( ˘ ˘ G quasi-simple connected reductive group over F , F ) I ⊂ ˘ ˘ G fjxed rational Iwahori subgroup, ˜ ˜ S simple affjne refmections W Iwahori–Weyl group,

  9. (‘positive’) affjne fmag variety Defjnition (Affjne Deligne–Lusztig variety – Rapoport) Setup, affine DL varieties (equal characteristic: F = F q (( t )) , F local fjeld mixed characteristic: F / Q p fjnite). σ : � a i t i �→ � a q ˘ i t i Frobenius F = F q (( t )) , G = G ( ˘ ˘ G quasi-simple connected reductive group over F , F ) I ⊂ ˘ ˘ G fjxed rational Iwahori subgroup, ˜ ˜ S simple affjne refmections W Iwahori–Weyl group, Let w ∈ ˜ W , b ∈ ˘ G . X w ( b ) = { g ∈ ˘ G /˘ I ; g − 1 bσ ( g ) ∈ ˘ I w ˘ I } .

  10. (‘positive’) affjne fmag variety Defjnition (Affjne Deligne–Lusztig variety – Rapoport) Setup, affine DL varieties (equal characteristic: F = F q (( t )) , F local fjeld mixed characteristic: F / Q p fjnite). σ : � a i t i �→ � a q ˘ i t i Frobenius F = F q (( t )) , G = G ( ˘ ˘ G quasi-simple connected reductive group over F , F ) I ⊂ ˘ ˘ G fjxed rational Iwahori subgroup, ˜ ˜ S simple affjne refmections W Iwahori–Weyl group, Let w ∈ ˜ W , b ∈ ˘ G . X w ( b ) = { g ∈ ˘ G /˘ I ; g − 1 bσ ( g ) ∈ ˘ I w ˘ I } .

  11. Relative position map: what are the possible relative positions of id or ) , Example ( ? and odd I ∼ inv : ˘ G /˘ I × ˘ G /˘ → ˘ I \ ˘ G /˘ ˜ I − = W → g − 1 h ( g, h ) �−

  12. Relative position map: Example ( id or ) , odd I ∼ inv : ˘ G /˘ I × ˘ G /˘ → ˘ I \ ˘ G /˘ ˜ I − = W → g − 1 h ( g, h ) �− � what are the possible relative positions of g and σ ( g ) ?

  13. Relative position map: I ∼ inv : ˘ G /˘ I × ˘ G /˘ → ˘ I \ ˘ G /˘ ˜ I − = W → g − 1 h ( g, h ) �− � what are the possible relative positions of g and σ ( g ) ? Example ( SL 2 , b = 1 ) X w (1) � = ∅ ⇐ ⇒ w = id or ℓ ( w ) odd

  14. Example: GSp 4 , b = τ � = id , ℓ ( τ ) = 0 10 10 7 7 7 6 5 6 7 7 8 8 8 6 5 5 6 6 7 7 9 9 8 8 7 6 6 5 5 4 5 6 8 9 8 9 7 4 4 3 4 5 5 8 7 5 3 3 4 4 6 6 8 8 7 7 5 5 4 3 3 2 3 5 7 8 6 5 7 7 5 3 1 2 4 6 6 4 2 0 1 3 5 7 7 5 3 1 2 3 4 5 6 7 8 8 6 4 5 7 9 7 5 2 3 6 8 8 7 6 5 4 3 3 4 6 8 8 6 4 3 4 4 5 6 7 8 9 9 7 8 10 8 5 5 4 5 6 6 9 9 8 7 6 6 5 5 6 7 9 9 7 6 5 6 6 7 7 8 9 10 10

  15. The admissible set Fix t µ ∈ ˜ W translation element. Adm ( µ ) = { w ∈ ˜ W ; ∃ v ∈ W 0 : w ≤ t v ( µ ) } .

  16. The admissible set Fix t µ ∈ ˜ W translation element. Adm ( µ ) = { w ∈ ˜ W ; ∃ v ∈ W 0 : w ≤ t v ( µ ) } .

  17. The admissible set Fix t µ ∈ ˜ W translation element. Adm ( µ ) = { w ∈ ˜ W ; ∃ v ∈ W 0 : w ≤ t v ( µ ) } .

  18. The admissible set Fix t µ ∈ ˜ W translation element. Adm ( µ ) = { w ∈ ˜ W ; ∃ v ∈ W 0 : w ≤ t v ( µ ) } .

  19. The admissible set Fix t µ ∈ ˜ W translation element. Adm ( µ ) = { w ∈ ˜ W ; ∃ v ∈ W 0 : w ≤ t v ( µ ) } .

  20. The admissible set Fix t µ ∈ ˜ W translation element. Adm ( µ ) = { w ∈ ˜ W ; ∃ v ∈ W 0 : w ≤ t v ( µ ) } .

  21. The admissible set Fix t µ ∈ ˜ W translation element. Adm ( µ ) = { w ∈ ˜ W ; ∃ v ∈ W 0 : w ≤ t v ( µ ) } .

  22. . -conjugacy class element for a unique length , Given . in Can choose of . depend only on , be the projection. Let . , Parahoric variant: Main object of study: X ( µ, b ) K � X ( µ, b ) := X w ( b ) . w ∈ Adm ( µ )

  23. . , element for a unique length , Given . in Can choose of . -conjugacy class depend only on Main object of study: X ( µ, b ) K � X ( µ, b ) := X w ( b ) . w ∈ Adm ( µ ) Parahoric variant: K ⊂ ˜ � ˘ K ⊂ ˘ S , σ ( K ) = K G . Let π K : ˘ G /˘ I → ˘ G / ˘ K be the projection.

  24. . , element for a unique length , Given . in Can choose of . -conjugacy class depend only on Main object of study: X ( µ, b ) K � X ( µ, b ) := X w ( b ) . w ∈ Adm ( µ ) Parahoric variant: K ⊂ ˜ � ˘ K ⊂ ˘ S , σ ( K ) = K G . Let π K : ˘ G /˘ I → ˘ G / ˘ K be the projection. G / ˘ X ( µ, b ) K = π K ( X ( µ, b )) ⊂ ˘ K

  25. Main object of study: X ( µ, b ) K � X ( µ, b ) := X w ( b ) . w ∈ Adm ( µ ) Parahoric variant: K ⊂ ˜ � ˘ K ⊂ ˘ S , σ ( K ) = K G . Let π K : ˘ G /˘ I → ˘ G / ˘ K be the projection. G / ˘ X ( µ, b ) K = π K ( X ( µ, b )) ⊂ ˘ K X w ( b ) , X ( µ, b ) depend only on σ -conjugacy class [ b ] of b . Can choose b in ˜ W . Given µ , X ( µ, τ ) � = ∅ for a unique length 0 element τ ∈ ˜ W .

  26. NB: Usually not equi-dimensional. . . dim odd, Bonan: For . dim odd, For dim even, For Theorem (G–Yu) principally polarized abelian varieties with Iwahori level structure at dim X ( µ, τ ) = ? Say G = GSp 2 g , µ = ω ∨ g . Then dim X ( µ, τ ) equals the dimension of the supersingular locus of the moduli space of g -dimensional p , over F p . (For g = 1 : supersingular points in modular curve X 0 ( p ) over F p .)

  27. NB: Usually not equi-dimensional. Theorem (G–Yu) . dim principally polarized abelian varieties with Iwahori level structure at odd, Bonan: For dim X ( µ, τ ) = ? Say G = GSp 2 g , µ = ω ∨ g . Then dim X ( µ, τ ) equals the dimension of the supersingular locus of the moduli space of g -dimensional p , over F p . (For g = 1 : supersingular points in modular curve X 0 ( p ) over F p .) dim X ( µ, τ ) = g 2 /2 . For g even, g ( g − 1)/2 ≤ dim X ( µ, τ ) ≤ ( g + 1)( g − 1)/2 . For g odd,

  28. principally polarized abelian varieties with Iwahori level structure at Theorem (G–Yu) NB: Usually not equi-dimensional. dim X ( µ, τ ) = ? Say G = GSp 2 g , µ = ω ∨ g . Then dim X ( µ, τ ) equals the dimension of the supersingular locus of the moduli space of g -dimensional p , over F p . (For g = 1 : supersingular points in modular curve X 0 ( p ) over F p .) dim X ( µ, τ ) = g 2 /2 . For g even, g ( g − 1)/2 ≤ dim X ( µ, τ ) ≤ ( g + 1)( g − 1)/2 . For g odd, Bonan: For g ≤ 5 odd, g ( g − 1)/2 = dim X ( µ, τ ) .

  29. . Let -stratifjcation on , get Intersecting with . inv inv : for all lie in the same stratum Defjnition (Chen–Viehmann) The J -stratification Relative position (for K ⊂ ˜ S � ˘ K ⊂ ˘ G ) inv K : ˘ G / ˘ K × ˘ G / ˘ K → ˘ K \ ˘ G / ˘ K ∼ = W K \ ˜ W / W K ∼ = K W K .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend