toward detection of first supernovae
play

Toward Detection of First Supernovae - - Masaomi Tanaka - PowerPoint PPT Presentation

Toward Detection of First Supernovae - - Masaomi Tanaka L ~ 10 6 - 10 7.5 Lsun First Star (for 100-1000 Msun) Pop III 300 Msun 50 (2 um) m AB 45 40 10 11 12 13 14 15 16 17 18


  1. Toward Detection of First Supernovae - 初代星超新星の検出に向けて - Masaomi Tanaka 田中 雅臣

  2. L ~ 10 6 - 10 7.5 Lsun First Star (for 100-1000 Msun) Pop III 300 Msun 50 (2 um) m AB 45 40 10 11 12 13 14 15 16 17 18 19 JWST (5 σ ) z 100hr Taniguchi-san’s talk (e.g., Bromm+01, Stiavelli+09, Bromm & Yoshida 11, Rydberg+11)

  3. First Supernova L ~ 10 8-10 Lsun 10 10 Lsun 10 9 Lsun 10 8 Lsun 10 7 Lsun Observed magnitude @ z = 4 Smartt 2012

  4. Toward Detection of First Supernovae • Massive star evolution and supernova emission • Superluminous supernova • Survey for first supernovae

  5. 100 150 200 250 Mass Metallicity (mass loss) & Rotation core-collapse direct collapse supernova (CCSN) (SN? GRB?) pair-instability supernova (PISN)

  6. Final CO core mass 140 ( b ) Z = 10 -4 120 100 PISN SN 2007bi Z = 0.001 M CO / M � PISN 80 Z = 0.004 PISN 60 M ( 56 Ni) > 3 M � , CCSN CCSN 40 Z = 0.01 M ( 56 Ni) > 1 M � , CCSN 20 Z = 0.02 0 300 0 50 100 150 200 250 300 initial mass M MS / M � Yoshida+14, see Yoon+12 and Chatzopoulos+12 for the effect of rotation

  7. Final mass 200 M f = M MS ( a ) Z = 10 -4 pulsational 150 pair instability M f / M � wind 100 Z = 0.001 mass loss Z = 0.004 50 Z = 0.01 Z = 0.02 0 0 50 100 150 200 250 300 initial mass M MS / M � Yoshida+14

  8. Core-collapse supernova Tominaga+ 0.1 Msun He 56Ni O C Shock breakout (~ 1d for red supergiant) Element distribution E k ~ E int ~ 10 51 erg after explosion

  9. Pair-instability supernova (Takahashi-san’s talk) Chen+14 B200 50 100 150 200 O16 56Ni C -2 -2 4 Msun -2 -4 -4 -4 Si Mg log [x] -6 -6 -6 -8 -8 -8 R200 50 100 150 Enclosure Mass [M ] Explosive O/Si burning Element distribution E nuc ~ 10 53 erg after explosion E k ~ 10 52 erg

  10. 10 11 Lsun -22 10 10 Lsun Absolute R-band magnitude -20 IIn 10 9 Lsun -18 II -16 Ibc 10 8 Lsun 100d -14 1 year 10 7 Lsun -12 0 50 100 150 200 250 300 350 Days after the explosion

  11. Energy source of SN (1) radioactivity gamma gamma p n decay decay 56Ni ~1 week 56Co ~100 d 56Fe � M 56Ni � L = [1 . 7 × 10 9 e ( � t/ 8 . 8d) + 3 . 8 × 10 8 e ( � t/ 111d) ] L � 0 . 1 M � 0.1 Msun ejection => ~ 5 x 10 8 Lsun @ 20d

  12. Energy source of SN (2) internal energy � 1 � t b L ∼ E int ∆ t t � � t b � � 2 � � � E int t ∼ 3 × 10 8 L � 10 51 erg 1d 100d t b ~ 1d for RSG (R ~ 1000 Rsun) t b ~ 0.001d for WR (R ~ 1 Rsun) (negligible)

  13. Energy source of SN (3) kinetic energy dense CSM SN Moriya+14 High mass loss rate (> 10 -3 Msun/yr) ~100 yr before the explosion � � ∆ t � α � � � E k L ∼ 10 9 L � 10 51 erg 0 . 1 1yr

  14. 10 11 Lsun (3) -22 kinetic energy (2) 10 10 Lsun internal Absolute R-band magnitude -20 energy (1) IIn=CSM radioactive 10 9 Lsun -18 energy ( 56 Ni) 0.1 -16 10 8 Lsun -14 Ibc=WR II=RSG 10 7 Lsun 0.25 0.65 -12 0 50 100 150 200 250 300 350 Days after the explosion

  15. First supernovae... number for SN/ 1 yr survey JWST FOV 29 mag @4.5um 30 mag JWST t survey = 1 yr, t exp = 0.1 - 1 d Mesinger+06 Number of fields = t survey /2t exp

  16. Toward Detection of First Supernovae • Massive star evolution and supernova emission • Superluminous supernova • Survey for first supernovae

  17. 10 11 Lsun -22 -22 SN 2006gy 10 10 Lsun Absolute R-band magnitude Absolute R-band magnitude -20 -20 10 9 Lsun -18 -18 -16 -16 10 8 Lsun -14 -14 10 7 Lsun -12 -12 0 0 50 50 100 100 150 150 200 200 250 250 300 300 350 350 Days after the explosion Days after the explosion

  18. Kinetic-energy powered SN 2006gy emission line =Type IIn absorption line CSM interaction emission line

  19. 10 11 Lsun -22 -22 10 10 Lsun 56 Ni decay Absolute R-band magnitude Absolute R-band magnitude -20 -20 SN 2007bi 10 9 Lsun -18 -18 -16 -16 10 8 Lsun -14 -14 10 7 Lsun -12 -12 0 0 50 50 100 100 150 150 200 200 250 250 300 300 350 350 Days after the explosion Days after the explosion

  20. Possibly PISN?? M( 56 Ni) ~ 3 Msun b − 23 PISN models Data 80 M − 22 90 M 100 M 110 M − 21 Absolute M R (mag) 120 M − − 20 − 19 − − 18 − 17 − − 16 Gal-Yam+09 − 15 − 50 0 50 100 150 200 250 300 350 Time since explosion (d) But see Moriya+10, Yoshida+11 for core-collapse interpretation

  21. Spectrum: No hydrogen Observed Theory 0.4 SN 2007bi, 54 d after peak SN 1999as 0.35 SYNOW f t Hydrogen! 0.4 0.3 SN 2007bi, 54 d after peak Scaled F λ (erg s –1 cm –2 Å –1 ) SN 1999as 0.35 SYNOW f t 0.3 [Ca II ] Scaled F λ (erg s –1 cm –2 Å –1 ) 0.25 [Ca II ] 0.25 0.2 0.2 Mg II Ca II 0.15 Mg II Ca II 0.15 0.1 Ca II Mg II Fe II 0.05 0.1 0 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500 8,000 Rest-frame wavelength (Å) Ca II Mg II Fe II 0.05 0 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500 8,000 Rest-frame wavelength (Å) Gal-Yam+09 Dessart+13

  22. PISN without H...? 2.0 1.5 SN 2007bi relative flux [caII] 1.0 mgII mgI mgI 0.5 siII model OI OI 3000 4000 5000 6000 7000 8000 9000 wavelength (angstroms) Kasen+11

  23. 10 11 Lsun -22 -22 10 10 Lsun Not 56 Ni!! Absolute R-band magnitude Absolute R-band magnitude -20 -20 10 9 Lsun -18 -18 -16 -16 10 8 Lsun -14 -14 10 7 Lsun -12 -12 0 0 50 50 100 100 150 150 200 200 250 250 300 300 350 350 Days after the explosion Days after the explosion

  24. What powers this type...?? - Not 56 Ni - Not internal energy (no H) - Not (clearly) interaction - magnetar...??? Quimby+11

  25. 10 11 Lsun (3) Mystery -22 (1) Kinetic energy 10 10 Lsun Absolute R-band magnitude -20 ~10 -3 (2) Radioactivity 10 9 Lsun -18 0.1 0.65 -16 10 8 Lsun -14 0.25 10 7 Lsun -12 0 50 100 150 200 250 300 350 Days after the explosion

  26. 100 150 200 250 Mass 50 2 x 10 -2 direct collapse CCSN (SN? GRB?) 10 -3 Superluminous PISN (1 x 10 -2 if Salpeter) supernovae

  27. Toward Detection of First Supernovae • Massive star evolution and supernova emission • Superluminous supernova • Survey for first supernovae

  28. Type brightness color progenitor Normal SN x x O SLSN O ? O (kinetic energy) (bright in UV) (need CSM) SLSN ~ PISN(?) x ? O (radioactivity) (faint in UV) (H?) SLSN O O ?? (??) (bright in UV)

  29. Observed SLSN PISN model Quimby+11 Dessart+13

  30. “Genuine” PISN may be difficult 30 28 Peak Apparent Magnitude 26 NIR survey WFIRST/WISH 24 22 R250 R200 20 R150 B250 B200 18 He130 He100 @ 2 um 16 0 5 10 15 20 redshift Kasen+11, see also Dessart+13

  31. “Observed” SLSNe are detectable @ z > 10 NIR survey WFIRST/WISH MT, Moriya, Yoshida+13

  32. 23 z = 3 SPICA 24 6 25 AB magnitude 10 26 26 mag 27 15 WFIRST/WISH 28 20 29 JWST 30 1 2 3 4 5 6 7 8 9 10 Wavelength ( µ m) MT, Moriya, Yoshida+13

  33. Survey simulation star formation rate 10 -3 R M max , SN M min , SN ψ ( M )d M R SLSN ( z ) = f SLSN ρ ∗ ( z ) R M max M min M ψ ( M )d M Quimby+13

  34. WFIRST Up to z ~ 10 with planned strategy 10 3 WISH 100 deg 2 WFIRST-e + 3 µ m Number of SNe per bin WFIRST-e Euclid 6.5 deg 2 WFIRST 10 2 2019~ 40 deg 2 Euclid 10 1 10 0 WISH 10 -1 0 5 10 15 20 Redshift

  35. To detect supernovae @ z ~ 15 140 120 100 26.5 mag 80 N 60 25.5 40 20 0 8 10 12 14 16 18 20 Redshift AB = 26.5 mag (@ 1-4 um) 2000 deg 2 6 visits in 0.5 yr

  36. Studying IMF by number count Salpeter

  37. !! Caveats !! • Star formation rate => Needs galaxy survey (z >~ 10) • “Mysterious” objects • Progenitor (minimum mass?) • Metallicity dependence => # of SN/SFR as a function of redshift • Completeness => Needs well-controlled “missed” fraction

  38. Transient survey with Subaru/HSC (2014-) Superluminous supernovae at z ~ 5-6 10 6 20000 deg 2 LSST 10 5 100 deg 2 LSST deep drilling Number of SNe per bin 30 deg 2 HSC Deep 10 4 3 deg 2 HSC UltraDeep 10 3 10 2 10 1 10 0 10 -1 0 5 10 Redshift

  39. Subaru and Hyper Suprime-Cam 104 CCDs ~ 900 Megapixel 8.2m 3m 3t !

  40. Summary • “Normal” supernovae: difficult to detect @ z > 6 • “Superluminous” supernovae • kinetic powered, radioactively powered, and... • Detail of the progenitor is still mystery • Planned NIR survey can detect SLSNe up to z ~ 10 • Late 2010 and 2020- • z ~ 15 with dedicated NIR survey (2000 deg 2 ) • Lower-redshift survey is critical • progenitor, metallicity dependence, and completeness • Survey with Subaru is ongoing

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend