core collapse supernovae explosion models and long term
play

Core Collapse Supernovae: Explosion models and long-term neutrino - PowerPoint PPT Presentation

Core Collapse Supernovae: Explosion models and long-term neutrino emission 2 1 0 Luke Roberts NSCL, MSU 1 2 Core Collapse Supernovae: Multi- Messenger Events Neutrinos Nucleosynthesis See Bionta et al. 87 and 1.5 1.5 From


  1. Core Collapse Supernovae: Explosion models and long-term neutrino emission 2 1 0 Luke Roberts NSCL, MSU 1 2

  2. Core Collapse Supernovae: Multi- Messenger Events Neutrinos Nucleosynthesis − See Bionta et al. ’87 and 1.5 1.5 From Amarsi et al. ‘15 Hirata et al. ‘87 1.0 1.0 Energy (MeV) [O/Fe] 0.5 0.5 − [O/Fe] − 0.0 0.0 [OI] 630nm OI 777nm − 1.0 − 0.5 − 0.5 1.0 − 3 − 2 − 1 0 [Fe/H] Time (s) Gravitational Waves Electromagnetic − − From Ott et al. ‘12 From Filppenko ‘97 − − − − 2

  3. Overview • 3D Central Engine Models • Long term CCSN neutrino emission

  4. L n ( 10 52 erg s − 1 ) 40 30 20 Core Collapse 10 16 0 14 e n ( MeV ) 12 10 8 6 − 100 − 50 0 50 100 150 200 Time Post Bounce (ms) ▪ Stars with M >~ 9 M sun burn their core to Fe ▪ Core exceeds a Chandrasekhar mass supersonic collapse outside of homologous core bounce shock after ~2 x saturation density ▪ Gravitational binding energy of compact remnant: 2 GM NS ~ 3 × 10 53 erg R NS ▪ Binding energy of stellar envelope: ~ 10 51 erg

  5. Self Consistent Spherically Symmetric CCSN Explosions 0 4 10 50 ν e Accretion Phase Cooling Phase ¯ ν L/10 30 e ν e Energy Luminosity [10 51 erg/s] ν µ / τ -1 ] 20 3 52 erg s ν e 10 ν µ/ τ -1 5 10 2 3 L [10 2 1 1 -2 0.5 10 0 0.3 7 19 Time After Bounce [s] ν e ¯ 18 ν e < ε > [MeV] ν µ / τ 12 17 ¯ ν µ / τ 10 16 Mean Energy [MeV] 15 14 10 13 12 11 10 8 5 9 0 0.05 0.1 0.15 0.2 2 4 6 8 8 Time after bounce [s] 7 0.01 0.02 0.05 0.1 0.2 0.3 0.5 1 2 3 5 7 Time After Bounce [s] Huedepohl et al. (2010) Fischer et al. (2010, 2012) Only possible for low mass progenitors, mainly ECSN 5

  6. Simulating CCSNe Hydrodynamics + General Relativity + Neutrino Transport + Microphysics (EoS, ν -opacities, nuclear network) 6

  7. Post Bounce Evolution of CCSNe • Hydrodynamic instabilities (such as convection and SASI) can aid energy transport and shock propagation • In axial symmetry, this enhances the efficacy of neutrino energy deposition and results in successful explosions (Mueller et al. ’12, Bruenn et al. ’13) • Does the neutrino mechanism work in 3D? • How does this depend on input physics and numerics?

  8. Two Moment Neutrino Transport See e.g., Shibata et al. ’11, Cardall et al. ’13, Just et al. ’15, Kuroda et al. ’16, LR et al. ‘16 Boltzmann Equation: Take angular moments of the neutrino distribution function: Entropy p α 1 ... p α k ∂ x α + ∂ p i ∂ f ( x µ , p µ ) ∂ f ( x µ , p µ ) Z M A k ( � p µ u µ ) k � 2 f ( p β , x β ) δ ( ν + p δ u δ ) = dV p ∂τ ∂ x α ∂τ ∂ p i ( ν ) = ˜ S ( x µ , p µ ) Z Get conservation equations for projections of the rest frame energy dependent stress tensor: ⇣ ⌘ ⇣ ⌘ h i F j − β j ˜ F j ∂ j ln α − ˜ ∂ t ˜ α ˜ να n α ˜ M αβγ u γ ; β P ij K ij − ˜ ˜ S α n α E + ∂ j + ∂ ν = α E M αβ  ˜ ( ν ) ; β ˜ F k ∂ i β k P jk � ⇣ i − β j ˜ ⌘ ⇣ ⌘ P j ∂ t ˜ α ˜ ναγ i α ˜ M αβγ u γ ; β − ˜ 2 ∂ i γ jk + ˜ S α γ i α F i + ∂ j = α E ∂ i ln α + F i − ∂ ν α ⇣ ⌘ h i Amenable to finite volume techniques and truly 3D, but Still need to specify neutrino stress tensor: ( ν ) = 3 χ ( ξ ) − 1 ( ν ) , thin + 3 ( 1 − χ ( ξ )) P αβ P αβ P αβ ( ν ) , thick . 2 2

  9. Evolution to Explosion LR et al. (2016) 6 � e L � [10 52 erg s − 1 ] ¯ � e � x 4 2 20 18 � � [MeV] 16 14 12 10 8 40 80 120 160 200 240 280 320 360 t − t b [ms] 9

  10. Resolution and Symmetry Dependence of CCSNe Models 400 350 Shock Radius [km] 300 M [ M � s � 1 ] 1 s27FL 250 200 ˙ 150 100 40 80 120 160 200 240 280 320 360 t � t b [ms] LR et al. (2016) 10

  11. Resolution and Symmetry Dependence of CCSNe Models 400 400 350 350 Shock Radius [km] Shock Radius [km] s27FL 300 300 M [ M � s � 1 ] M [ M � s � 1 ] 1 1 s27FH s27FL 250 250 200 200 ˙ ˙ 150 150 100 100 40 40 80 80 120 120 160 160 200 200 240 240 280 280 320 320 360 360 t � t b [ms] t � t b [ms] LR et al. (2016) 11

  12. Resolution and Symmetry Dependence of CCSNe Models 400 400 400 350 350 350 s27FL Shock Radius [km] Shock Radius [km] Shock Radius [km] s27FH s27FL 300 300 300 M [ M � s � 1 ] M [ M � s � 1 ] M [ M � s � 1 ] 1 1 1 s27FL s27OH s27FH 250 250 250 200 200 200 ˙ ˙ ˙ 150 150 150 100 100 100 40 40 40 80 80 80 120 120 120 160 160 160 200 200 200 240 240 240 280 280 280 320 320 320 360 360 360 t � t b [ms] t � t b [ms] t � t b [ms] LR et al. (2016) 12

  13. Resolution and Symmetry Dependence of CCSNe Models 400 400 400 s27FL 350 350 350 s27FH Shock Radius [km] Shock Radius [km] Shock Radius [km] s27OH s27FL 300 300 300 M [ M � s � 1 ] M [ M � s � 1 ] M [ M � s � 1 ] 1 1 1 s27FH s27FL s27OL 250 250 250 200 200 200 ˙ ˙ ˙ 150 150 150 100 100 100 40 40 40 80 80 80 120 120 120 160 160 160 200 200 200 240 240 240 280 280 280 320 320 320 360 360 360 t � t b [ms] t � t b [ms] t � t b [ms] LR et al. (2016) 13

  14. Resolution and Symmetry Dependence of CCSNe Models 400 400 400 400 s27FL s27FL 350 350 350 350 s27FH s27FH Shock Radius [km] Shock Radius [km] Shock Radius [km] Shock Radius [km] s27OH s27OH s27FL 300 300 300 300 M [ M � s � 1 ] M [ M � s � 1 ] M [ M � s � 1 ] M [ M � s � 1 ] 1 1 1 1 s27OL s27FH s27FL s27OL 250 250 250 250 200 200 200 200 ˙ ˙ ˙ ˙ 150 150 150 150 100 100 100 100 40 40 40 40 80 80 80 80 120 120 120 120 160 160 160 160 200 200 200 200 240 240 240 240 280 280 280 280 320 320 320 320 360 360 360 360 t � t b [ms] t � t b [ms] t � t b [ms] t � t b [ms] LR et al. (2016) 14

  15. Turbulent Convection Murphy & Meakin ’11, Handy et al. ’14, Couch & Ott ‘15 0.35 81 ms 0.30 128 ms 179 ms 0.25 228 ms Tr R ij / p 0 /3 0.20 279 ms 0.15 0.10 0.05 LR et al. (2016) 0.00 50 100 150 200 250 300 Radius [km] Reynolds stress can contribute significantly to the pressure in the gain region and there is some resolution dependence of the Reynolds stress 15

  16. 3D Explosion Models Takiwaki et al. ’12, Melson ’15, Lentz ’15, LR et al. ’16, Takiwaki et al. ‘16 d Lentz et al. (2015) Janka et al. (2016) Many groups are seeing shock runaway, but maybe not quantitative • D f = � m º q agreement D = D f q Sensitive to input physics (Melson et al. ’15) and resolution (Radice et al. ’15) • = = Nevertheless, things look relatively positive for 3D shock runaway • 16 2 � D = q � D = q � n n n = n n n = n n mt m t mt m t a = � + + - r > - r < a + + + + - r > +

  17. Jet Driven Supernovae • Rapidly rotating, = t b = 186.4ms = = = = t b = 67.8ms = t t magnetized SNe • Full 3D Dynamics also important here • Kink instabilities in jet significantly Full 3D Octant symmetry change dynamics Figure 1. − Moesta et al. (2016) 17

  18. The Supernova Neutrino Signal Energy (MeV) Time (s) Super-Kamiokande Neutrino Detector ~20 Neutrino Events Observed from SN 1987a at two detectors via the Larger, modern detectors will detect thousands of reaction events from a nearby supernova, allowing us to e + p → e + + n directly probe the nature of the nascent neutron ν star See Bionta et al. ’87 and Hirata et al. ‘87

  19. Milky Way Supernova Rate • Most recent known MW CCSN Cas A (~300 yrs) multiply by ~2.4 to get MW rate • Look for supernovae in search galaxies analogous to MW galaxy rate [SNu] (Cappellaro et al. 1999) type Ia II+Ib/c All S0a-Sb 0 . 27 ± 0 . 08 0 . 63 ± 0 . 24 0 . 91 ± 0 . 26 Sbc-Sd 0 . 24 ± 0 . 10 0 . 86 ± 0 . 31 1 . 10 ± 0 . 32 • Take census of historical Spirals ∗ 0 . 25 ± 0 . 09 0 . 76 ± 0 . 27 1 . 01 ± 0 . 29 galactic supernovae and ∗ Includes types from Sm, irregulars and peculiars. Cappellaro et al. (1999) correct for obscuration (Tammann et al. 1994) • Reasonably consistent 19

  20. SN* Neutrino Detectors Detector Type Mass (kt) Location Events Flavors Status Super-Kamiokande H 2 O 32 Japan 7,000 ¯ Running ν e LVD C n H 2 n 1 Italy 300 ¯ Running ν e KamLAND C n H 2 n 1 Japan 300 ¯ Running ν e Borexino C n H 2 n 0.3 Italy 100 ¯ Running ν e (10 6 ) IceCube Long string (600) South Pole ¯ Running ν e Baksan C n H 2 n 0.33 Russia 50 ¯ Running ν e MiniBooNE ∗ C n H 2 n 0.7 USA 200 ¯ (Running) ν e HALO Pb 0.08 Canada 30 Running ν e , ν x Daya Bay C n H 2 n 0.33 China 100 ¯ Running ν e NO ν A ∗ C n H 2 n 15 USA 4,000 ¯ Turning on ν e SNO+ C n H 2 n 0.8 Canada 300 ¯ Near future ν e MicroBooNE ∗ Ar 0.17 USA 17 Near future ν e DUNE Ar 34 USA 3,000 Proposed ν e Hyper-Kamiokande H 2 O 560 Japan 110,000 ¯ Proposed ν e JUNO C n H 2 n 20 China 6000 ¯ Proposed ν e RENO-50 C n H 2 n 18 Korea 5400 ¯ Proposed ν e LENA C n H 2 n 50 Europe 15,000 ¯ Proposed ν e (10 6 ) PINGU Long string (600) South Pole ¯ Proposed ν e Scholberg et al. (2015) 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend