time parallel solution of the eddy current problem
play

Time-parallel solution of the eddy current problem Iryna - PowerPoint PPT Presentation

Time-parallel solution of the eddy current problem Iryna Kulchytska-Ruchka 1,2 , Sebastian Schps 1,2 , Herbert De Gersem 1,2 1 Graduate School of Computational Engineering, 2 Institut fr Theorie Elektromagnetischer Felder, Technische


  1. Time-parallel solution of the eddy current problem Iryna Kulchytska-Ruchka 1,2 , Sebastian Schöps 1,2 , Herbert De Gersem 1,2 1 Graduate School of Computational Engineering, 2 Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt 4th STEAM Collaboration Meeting, Darmstadt www.graduate-school-ce.de September 21, 2017

  2. Outline Introduction � Motivation � The eddy current problem Parallel-in-time solution � The Parareal method for IVPs � Numerical example: coaxial cable model Fourier basis for time-periodic systems � Coarse solution by spectral collocation � Numerical results: coaxial cable model � Systems with nonsmooth excitations Conclusions and outlook TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 2/33

  3. Overview Introduction � Motivation � The eddy current problem Parallel-in-time solution � The Parareal method for IVPs � Numerical example: coaxial cable model Fourier basis for time-periodic systems � Coarse solution by spectral collocation � Numerical results: coaxial cable model � Systems with nonsmooth excitations Conclusions and outlook TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 3/33

  4. Motivation → Transient FEM simulation Fig.: Cross-section of an induction machine (J. Gyselinck). TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 4/33

  5. Motivation → Transient FEM simulation Fig.: Cross-section of an induction machine (J. Gyselinck). → System evolution in time TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 4/33

  6. Motivation → Transient FEM simulation Fig.: Cross-section of an induction machine (J. Gyselinck). → System evolution in time TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 4/33

  7. Motivation → Transient FEM simulation • Long settling time till the steady state Fig.: Cross-section of an induction machine (J. Gyselinck). → System evolution in time TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 4/33

  8. Motivation → Transient FEM simulation • Long settling time till the steady state Fig.: Cross-section of an induction machine (J. Gyselinck). • Many time steps = ⇒ time-consuming computation! → System evolution in time TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 4/33

  9. Overview Introduction � Motivation � The eddy current problem Parallel-in-time solution � The Parareal method for IVPs � Numerical example: coaxial cable model Fourier basis for time-periodic systems � Coarse solution by spectral collocation � Numerical results: coaxial cable model � Systems with nonsmooth excitations Conclusions and outlook TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 5/33

  10. The eddy current problem Fundamentals of electromagnetism: Maxwell’s equations. Assumptions: � � ∂ D � � � Quasi-static regime: | J | ≫ � ; � � ∂ t � � Neglect hysteresis. The eddy current equation: σ∂ A ∂ t + curl ( ν ( | curl A | ) curl A ) = J s , A − unknown magnetic vector potential; J s − impressed current density; σ, ν − electric conductivity and magnetic reluctivity. TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 6/33

  11. Semi-discrete problem Solve the IVP in time: M d t u ( t ) = f ( t , u ) , t ∈ I := ( 0 , T ) , u ( 0 ) = u 0 , where u : I �→ R N dof denotes the space-discretization of A . TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 7/33

  12. Semi-discrete problem Solve the IVP in time: M d t u ( t ) = f ( t , u ) , t ∈ I := ( 0 , T ) , u ( 0 ) = u 0 , where u : I �→ R N dof denotes the space-discretization of A . • f ( t , u ) = − Ku ( t ) + g ( t ); M , K ∈ R N dof × N dof − mass and stiffness matrices; • • g ( t ) − excitation (e.g., impressed current). TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 7/33

  13. Overview Introduction � Motivation � The eddy current problem Parallel-in-time solution � The Parareal method for IVPs � Numerical example: coaxial cable model Fourier basis for time-periodic systems � Coarse solution by spectral collocation � Numerical results: coaxial cable model � Systems with nonsmooth excitations Conclusions and outlook TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 8/33

  14. The Parareal method: splitting of the time interval Partitioning the time interval into N windows (e.g., one per core) yields  M d t u 0 = f ( t , u 0 ) , u 0 ( T 0 ) = U 0 , t ∈ ( T 0 , T 1 ] ,    M d t u 1 = f ( t , u 1 ) , u 1 ( T 1 ) = U 1 , t ∈ ( T 1 , T 2 ] ,   . .  .     M d t u N − 1 = f ( t , u N − 1 ) , u N − 1 ( T N − 1 ) = U N − 1 , t ∈ ( T N − 1 , T N ] , TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 9/33

  15. The Parareal method: splitting of the time interval Partitioning the time interval into N windows (e.g., one per core) yields  M d t u 0 = f ( t , u 0 ) , u 0 ( T 0 ) = U 0 , t ∈ ( T 0 , T 1 ] ,    M d t u 1 = f ( t , u 1 ) , u 1 ( T 1 ) = U 1 , t ∈ ( T 1 , T 2 ] ,   . .  .     M d t u N − 1 = f ( t , u N − 1 ) , u N − 1 ( T N − 1 ) = U N − 1 , t ∈ ( T N − 1 , T N ] , u ( t ) t T 0 T 1 T 2 T 3 T 4 T 5 TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 9/33

  16. The Parareal method: splitting of the time interval Partitioning the time interval into N windows (e.g., one per core) yields  M d t u 0 = f ( t , u 0 ) , u 0 ( T 0 ) = U 0 , t ∈ ( T 0 , T 1 ] ,    M d t u 1 = f ( t , u 1 ) , u 1 ( T 1 ) = U 1 , t ∈ ( T 1 , T 2 ] ,   . .  .     M d t u N − 1 = f ( t , u N − 1 ) , u N − 1 ( T N − 1 ) = U N − 1 , t ∈ ( T N − 1 , T N ] , u ( t ) t T 0 T 1 T 2 T 3 T 4 T 5 TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 9/33

  17. Parareal as the Newton-Raphson method (I) Let F ( t , T i , U ) be the solution operator of the IVP on ( T i , T i + 1 ] , for i = 0 , . . . , N − 1 , which propagates the initial value U in time. TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 10/33

  18. Parareal as the Newton-Raphson method (I) Let F ( t , T i , U ) be the solution operator of the IVP on ( T i , T i + 1 ] , for i = 0 , . . . , N − 1 , which propagates the initial value U in time. Matching conditions can be satisfied by root finding  U 1 − F ( T 1 , T 0 , U 0 ) = 0 ,    . . .    U N − 1 − F ( T N − 1 , T N − 2 , U N − 2 ) = 0 TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 10/33

  19. Parareal as the Newton-Raphson method (I) Let F ( t , T i , U ) be the solution operator of the IVP on ( T i , T i + 1 ] , for i = 0 , . . . , N − 1 , which propagates the initial value U in time. Matching conditions can be satisfied by root finding  U 1 − F ( T 1 , T 0 , U 0 ) = 0 ,    . . .    U N − 1 − F ( T N − 1 , T N − 2 , U N − 2 ) = 0 or, equivalently, � � U T = U T 0 , U T 1 , ..., U T i , ..., U T F ( U ) = 0 , with . N − 1 M. J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm , Domain Decomposition Methods in Science and Engineering XVII, Springer Berlin Heidelberg, 2008. TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 10/33

  20. Parareal as the Newton-Raphson method (II) The Newton-Raphson iteration: for k = 0 , 1 , . . . U ( k + 1 ) = u 0 , 0 � � + ∂ F ( T n , T n − 1 , U ) � � U ( k + 1 ) T n , T n − 1 , U ( k ) U ( k + 1 ) − U ( k ) = F , n n − 1 n − 1 n − 1 ∂ U where n = 1 , . . . , N − 1 . TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 11/33

  21. Parareal as the Newton-Raphson method (II) The Newton-Raphson iteration: for k = 0 , 1 , . . . U ( k + 1 ) = u 0 , 0 � � + ∂ F ( T n , T n − 1 , U ) � � U ( k + 1 ) T n , T n − 1 , U ( k ) U ( k + 1 ) − U ( k ) = F , n n − 1 n − 1 n − 1 ∂ U where n = 1 , . . . , N − 1 . How to calculate the derivative? TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 11/33

  22. Parareal as the Newton-Raphson method (II) The Newton-Raphson iteration: for k = 0 , 1 , . . . U ( k + 1 ) = u 0 , 0 � � + ∂ F ( T n , T n − 1 , U ) � � U ( k + 1 ) T n , T n − 1 , U ( k ) U ( k + 1 ) − U ( k ) = F , n n − 1 n − 1 n − 1 ∂ U where n = 1 , . . . , N − 1 . How to calculate the derivative? Cheap approximation by a coarse propagator G : � � ∂ F ( T n , T n − 1 , U ) U ( k + 1 ) − U ( k ) ≈ n − 1 n − 1 ∂ U � � � � T n , T n − 1 , U ( k + 1 ) T n , T n − 1 , U ( k ) ≈ G − G . n − 1 n − 1 TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 11/33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend