time accelerated
play

Time accelerated P E R F O R M 6 0 P E R F O R M 6 0 P E R F O R - PowerPoint PPT Presentation

Time accelerated P E R F O R M 6 0 P E R F O R M 6 0 P E R F O R M 6 0 P E R F O R M 6 0 F P 7 P ro je ct F P 7 P r oje ct F P 7 P ro je ct F P 7 P r oje ct Atomic Kinetic Monte Carlo for radiation damage modelling C. Domain,


  1. Time accelerated P E R F O R M 6 0 P E R F O R M 6 0 P E R F O R M 6 0 P E R F O R M 6 0 F P 7 P ro je ct F P 7 P r oje ct F P 7 P ro je ct F P 7 P r oje ct Atomic Kinetic Monte Carlo for radiation damage modelling C. Domain, C.S. Becquart, R. Ngayam-Happy EDF R&D Dpt Matériaux & Mécanique des Composants Les Renardieres, Moret sur Loing, France UMET, Université de Lille 1 Villeneuve d’Ascq, France

  2. 1nm 3 0 - ps (10-30nm) 3 ns m 3 ab initio 40 years Molecular dynamics Multi-scale modelling Finite elements s - h cm 3 Barbu, CEA + experimental validation Pareige, U. Rouen KMC P E R F O R M 6 0 P E R F O R M 6 0 cohesive model P E R F O R M 6 0 P E R F O R M 6 0 F P 7 P r o je ct F P 7 P r oje ct F P 7 P r o je ct F P 7 P r oje ct & parameterisation Micro-macro (30-100nm) 3 µm 3 h-year Dislocation Mesoscopic dynamics 2 EDF R&D - Workshop BEMOD12 - Dresden - March 2012 EURATOM European Project PERFECT ( FI6O-CT-2003-508840)

  3. Radiation damage Irradiation: Material: Electron: Fe Frenkel pairs + alloying elements: Cu, Ni, Mn, Si, … Ion and neutron: + carbon, nitrogen displacement cascades ( 10 - 100 keV) vacancies and interstitials: + dislocations isolated and in clusters 0.08 dpa – Neutron irradiation vacancies Ni Si displacement cascades neutron Mn PKA Cu interstitials  E Elastic interaction PKA : primary knock-on atom energy transfert 15x15x50 nm TAP, Pareige, U. Rouen Microstructure evolution: point defect clusters: nanovoids, dislocation loops solute clusters (# or \# point defects) TEM, Barbu, CEA 3 EDF R&D - Workshop BEMOD12 - Dresden - March 2012

  4. Kinetic Monte Carlo simulation of irradiation Atomic KMC Object KMC Recombination Electrons + Emission + traps Frenkel Interstitial loop pairs PBC dislocation Emission or surface Vacancy cluster Interstitial cluster Neutrons surface surface Cascades cascades sinks + Annihilation Vacancy loop PBC cascade Migration PBC Frenkel pairs Paires de Frenkel Paires de Frenkel surface surface Ageing (one single vacancy) [JNM 335 (2004) 121–145] 4 EDF R&D - Workshop BEMOD12 - Dresden - March 2012

  5. Atomic Kinetic Monte Carlo of microstructure evolution Ni Si Objective: Simulation formation of solute rich complexes (observed by TAP) under irradiation Mn Cu TAP, Pareige, U. Rouen 15x15x50 nm Ab initio AKMC  Fe-V_1nn Solute interactions (Cu, Ni, Mn, Si) (interface energies, Solute diffusion by  Fe-Si_2nn mixing energies …) - vacancy mechanisms - interstitial mechanisms Parameterisation cohesive model Experimental data and Thermodynamical data    ( 1 )   ( 2 )   ( 1 )   ( 2 )   ( 1 )   ( 2 ) 4 3 8 6 4 3 E       ( ) ( ) ( ) ( ) ( ) ( ) mixing Fe Fe Fe Fe Fe X Fe X X X X X   ( 1 )   ( 2 )   ( 1 )   ( 2 ) ( ) 8 6 4 3 Z E formation V     ( ) ( ) ( ) ( ) V Z V Z Z Z Z Z         ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) E      ( ) ( ) ( ) ( ) ( ) binding V X Fe V Fe X Fe Fe V X Experimental validation: TAP, SANS, SAXS, PA, TEP 5 EDF R&D - Workshop BEMOD12 - Dresden - March 2012

  6. Atomistic Kinetic Monte Carlo (AKMC) Atomistic Kinetic Monte Carlo (AKMC) Vincent et al. NIMB 255 (2007) 78  Treatment of multi-component systems on a rigid lattice Vincent et al. JNM 382 (2008) 154  Substitutional elements  Interstitial elements Code: LAKIMOCA  Diffusion by 1nn jumps  Via vacancies  Via interstitials   Ea    Jump Probability: exp    X = attempt frequency X X   kT  Residence Time Algorithm applied to all events  Vacancy and Interstitial jumps          3,1 3,1 3,1 1,2 1,2 1,2 2,2 2,2 2,2  Frenkel Pairs and Cascade flux for irradiation v 2 v 2 v 2 v 1 v 1 v 1 v v v 1 3 3 3   t    Average time step:         2,1 2,1 2,1 3,2 3,2 3,2 1,1 1,1 1,1 jk    , j k 3,2 3,2 3,2                1,1 1,1 1,1 1,8 1,8 1,8 2,1 2,1 2,1 2,7 2,7 2,7 3,7 3,7 3,7  Environment dependant form of activation energy Ea  Ef Ei   ( ) Ea Ea X i 2 6 EDF R&D - Workshop BEMOD12 - Dresden - March 2012

  7. AKMC irradiation simulation conditions AKMC irradiation simulation conditions For electron irradiation: Frenkel Pair (FP) flux For neutron irradiation: flux of • 20 keV and 100 keV cascades debris obtained by Molecular Dynamics (R. Stoller, J. Nucl. Mater. 307-311 (2002) 935) • Frenkel Pairs cascades surface Cascades PBC PBC Typical simulation box: 1.01  10 -17 cm 3 boxes 8.65 10 6 atoms Frenkel pairs Paires de Paires de Frenkel Frenkel surface 7 EDF R&D - Workshop BEMOD12 - Dresden - March 2012 7

  8. AKMC simulation of radiation damage accumulation Target dose: 0.1 dpa Irradiation duration: 2 days (10 5 s) up to 40 years (10 9 s) Irradiation temperature: 573 K Defect accumulation: > 100 point defects in the simulation box Events: Self interstitial migration (0.3 eV) : time step : 10 -10 s Vacancy migration (0.65 eV) : time step : 10 -7 s Rapidly: annihilation or formation point defect clusters Point defect migration within point defect - solute clusters or trapping with solutes Very large number of jumps required to have “significant event” (ie emission or diffusion) Other jumps with high migration energies (1 eV) : time step : 10 -4 s Computational limitation: ~10 10 steps / month Very complex situation: many events with different time scale & long simulation required 8 EDF R&D - Workshop BEMOD12 - Dresden - March 2012

  9.  Cohesive energy model Cohesive energy model Ef Ei   ( ) Ea Ea X i 2  Fe-V_1nn         ( )   ( )   ( )   ( )   ( )   ( ) i i i i i i E Vacancy:       ( ) ( ) ( ) ( ) ( ) ( ) Fe Fe V V Fe V Fe X V X X Y j k l m n p  Fe-Si_2nn • RPV: 1nn and 2nn pair interactions • FeCr: 2BM potential 1 nnComp  ( ) 1 E dumb X nnTens ( )  ( ) E X mixed i j E X X l l j • solute - dumbbell l j k + + SIA: E b (dumb - dumb) • dumbbell - dumbbell 1nn & 2nn Solute atoms Fe atom            1   1     ( ) ( ) ( ) ( ) nnComp nnTens mixte E E E dumb X E X E X X E dumb dumb   dumb f l i j l j l j k l   , i j j i j + + + FIA (C): FIA vacancy solute SIA ~ 100 ab initio data considered in the model 9 EDF R&D - Workshop BEMOD12 - Dresden - March 2012 9

  10. Cohesive model:  X-Y and  V-X determination Binary alloys ( 1 ) ( 2 ) ( 1 ) ( 2 ) ( 1 ) ( 2 )              4 3 8 6 4 3 • E       ( ) ( ) ( ) ( ) ( ) ( ) mélange Fe Fe Fe Fe Fe X Fe X X X X X • ( 1 ) ( 2 ) ( 1 ) ( 2 ) ( 1 ) ( 2 )              2 4 2 2 E       int ( 100 ) ( ) ( ) ( ) ( ) ( ) ( ) erface Fe Fe Fe Fe Fe X Fe X X X X X • ( 1 ) ( 2 )     ( ) 4 3 i = 1 or 2 E cohésion Z   ( ) ( ) • Z Z Z Z X, Y = solute atoms ( 1 ) ( 2 ) ( 1 ) ( 2 )         Z ( ) 8 6 4 3 • E formation lac     ( ) ( ) ( ) ( ) lac Z lac Z Z Z Z Z Z = Fe or solute atom • ( ) ( ) ( ) ( )       i i i i 2 E     ( ) ( ) ( ) ( ) liaison lac lac Fe lac Fe Fe lac lac ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 )         E      ( ) ( ) ( ) ( ) ( ) liaison lac X Fe lac Fe X Fe Fe lac X ε Fe-Cu_1nn Ternary alloys… ε Si-Si_2nn ( ) ( ) ( ) ( ) ( )         i i i i i E      ( ) ( ) ( ) ( ) ( ) liaison X Y Fe X Fe Y Fe Fe X Y Parameters Ab initio data Adjustment on thermal annealing experiment 10 EDF R&D - Workshop BEMOD12 - Dresden - March 2012 10

  11. Neutron irradiation of FeCuNiMnSi alloys Medium term evolution by atomic Kinetic Monte Carlo Fe-0.2Cu-0.53Ni-1.26Mn-0.63Si (at.%) at 300°C Flux: 6.5 10 -5 dpa.s -1 Dose: 1.3 10 -3 dpa V-solute complex SIA-solute complexes Small solute clusters Cu Cu Cu Cu Cu Cu Ni Ni Ni Point defect clusters = germs for precipitation V Si Si Si Si Si Si Mn Mn Mn Mn Mn Mn SIA [> 1 month on 1 CPU] 11 EDF R&D - Workshop BEMOD12 - Dresden - March 2012

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend