thermodynamics focuses on state functions p v m s nature
play

Thermodynamics focuses on state functions: P, V, M, S , . . . Nature - PowerPoint PPT Presentation

Thermodynamics focuses on state functions: P, V, M, S , . . . Nature often gives us response functions (derivatives): 1 1 1 V V V V T S T P V P T V P adiabatic M T


  1. Thermodynamics focuses on state functions: P, V, M, S , . . . Nature often gives us response functions (derivatives): 1 1 1 � ∂V � ∂V � ∂V � � � α ≡ V κ T ≡ − κ S ≡ − ∂T P V ∂P T V ∂P adiabatic ∂M � � χ T ≡ ∂H T 8.044 L6B1

  2. Example Non-ideal gas Given • Gas → ideal gas for large T & V ∂P Nk � � = • ∂T V − Nb V 2 aN 2 ∂P NkT � � = − + • ( V − Nb ) 2 V 3 ∂V T Find P 8.044 L6B2

  3. ∂P ∂P � � � � dP = dV + dT ∂V T ∂T V ∂P Nk � � � � � � P = dT + f ( V ) = dT + f ( V ) ∂T V V − Nb NkT = ( V − Nb ) + f ( V ) 8.044 L6B3

  4. 2 aN 2 ∂P NkT NkT + f I ( V = − = − V ) + ( V − Nb ) 2 ( V − Nb ) 2 V 3 ∂V j ) T j V ) 2 aN 2 aN 2 � f ( V ) = dV = − + c V 3 V 2 aN 2 NkT P = + c − V 2 ( V − Nb ) but c = 0 since P → NkT/V as V → ∞ 8.044 L6B4

  5. Internal Energy U Observational fact initial final isolated ∆ W (adiabatic) Final state is independent of how ∆ W is applied. Final state is independent of which adiabatic path is followed. 8.044 L6B5

  6. ⇒ a state function U such that ∆ U = ∆ W adiabatic U = U (independent variables) = U ( T, V ) or U ( T, P ) or U ( P, V ) for a simple fluid 8.044 L6B6

  7. Heat If the path is not adiabatic, dU = d /W d /Q ≡ dU − d /W d /Q is the heat added to the system. It has all the properties expected of heat. 8.044 L6B7

  8. First Law of Thermodynamics dU = d /Q + d /W • U is a state function • Heat is a flow of energy • Energy is conserved 8.044 L6B8

  9. Ordering of temperatures dQ T 1 T 2 When d /W = 0, heat flows from high T to low T. 8.044 L6B9

  10. Example Hydrostatic System: gas, liquid or simple solid Variables (with N fixed): P, V, T, U . Only 2 are independent.     d /Q d /Q C V ≡ C P ≡     dT dT V P Examine these heat capacities. 8.044 L6B10

  11. dU = d /Q + d /W = d /Q − P dV d /Q = dU + P dV d . We have dV . We want dT ∂U ∂U � � � � dU = dT + dV ∂T V ∂V T 8.044 L6B11

  12. ∂U ∂U � � �� � � /Q = d dT + + P dV ∂T V ∂V T d /Q ∂U ∂U dV � � �� � � + P = + ⇒ dT ∂T V ∂V T dT ⎛ ⎞ /Q d ∂U � � C V ≡ ⎝ = ⎠ dT ∂T V V 8.044 L6B12

  13. ⎛ ⎞ � � �� � � � � /Q d ∂U ∂U ∂V C P ≡ ⎝ + P = + ⎠ dT ∂T V ∂V T ∂T P P " T v " T v C V αV �� � � ∂U C P − C V = + P αV ∂V T The 2 nd law will allow us to simplify this further. � � ∂U Note that C P = ∂T P . 8.044 L6B13

  14. �������������������������������������������� ������� ���������� ���� ���������� ��������� ������ ������� ∆ ��� ∆ ��� ∆ ��� ∆ ��� 8.044 L6B14

  15. ∆ ����������������������������������������� ������������������ ρ ��� � � ��������������������������������������������������� �� � ����� ρκ � 8.044 L6B15

  16. ������������������������������������������������ ∂U � ������������������������������������� = 0 ∂V T � �������������������� � ���������� ���������� ���������� ������������������� � ��������� � ���� � 8.044 L6B16

  17. No work done so ∆ W = 0 T f = T i ⇒ ∆ Q = 0 together ⇒ ∆ U = 0 ( ∂U/∂V ) T = 0 → , U= Q , U= Q here quasi-static changes • Physics: no interactions, single particle energies only ⇒ ( ∂U/∂V ) T = 0 • Thermo: 2 nd law + ( PV = NkT ) ⇒ ( ∂U/∂V ) T = 0 8.044 L6B17

  18. Consequences ∂U ∂U dU = dT + dV ∂T V ∂V T j V ) j V ) 0 C V T � C V ( T ' ) dT ' + constant U = 0 j V ) set =0 3 Nk . In a monatomic gas one observes C V = 2 3 NkT . Then the above result gives U = C V T = 2 8.044 L6B18

  19. � � � � ∂U ∂V C P − C V = ( + P ) ∂V ∂T T P , p , p 0 ∂ ∂T ( NkT/P ) P = Nk/P = Nk for any ideal gas Applying this to the monatomic gas one finds 3 5 C P = Nk + Nk = Nk 2 2 5 γ ≡ C P /C V = 3 8.044 L6B19

  20. Adiabatic Changes /Q = 0 d Find the equation for the path. Consider a hydrostatic example. � � �� � � ∂U ∂U /Q = d dT + + P dV = 0 ∂T V ∂V T " T v " T v C V ( C P − C V ) /αV ⎛ ⎞ � � ∂T C P − C V ) 1 ( γ − 1) = − = − ⎝ ⎠ ∂V ∆ Q =0 C V αV αV This constraint defines the path. 8.044 L6B20

  21. Apply this relation to an ideal gas. 1 1 ∂ 1 1 V 1 � ∂V � NkT � Nk � � � = = = = α ≡ V ∂T P V ∂T P V P V T T P Path dT T = − ( γ − 1) dV V ⎛ ⎞ dT dV T V = − ( γ − 1) → ln = − ( γ − 1) ln ⎝ ⎠ T V T 0 V 0 ⎞ − ( γ − 1) ⎛ ⎞ ⎛ T V = ⎝ ⎠ ⎝ ⎠ T 0 V 0 8.044 L6B21

  22. Adiabatic Isothermal 1 = c TV γ − � "" PV = c ������� PV γ = c 1 " V − P ∝ dP P = − c) �������� dV V γ = 5 / 3 (monatomic) � 5 / 3 V − P ∝ dP 5 P = − 3 V dV 8.044 L6B22

  23. ������������������������� ���������� � ������������������ ������������������� ���������� ∆ ������ ���������� ∆ ������ ���������������� ������������ ∆ ������ ∆ �������������� ∆ ������ ∆ ���������������� � � ������� ���������� � � 8.044 L6B23

  24. Starting with a few known facts, 1 st law, d /W , and state function math, one can find relations between some thermodynamic quantities, a general expression for dU , and the adiabatic constraint. Adding models for the equation of state and the heat capacity allows one to find the internal energy U and the adiabatic path. 8.044 L6B24

  25. MIT OpenCourseWare http://ocw.mit.edu 8.044 Statistical Physics I Spring 2013 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend