the wonderful world of brownian functionals
play

The Wonderful World of Brownian Functionals Satya N. Majumdar - PowerPoint PPT Presentation

The Wonderful World of Brownian Functionals Satya N. Majumdar Laboratoire de Physique Th eorique et Mod` eles Statistiques,CNRS, Universit e Paris-Sud, France July 11, 2011 S.N. Majumdar The Wonderful World of Brownian Functionals


  1. Free propagator via path integral � x ( t )= x � t � − 1 � x 2 ( τ ) d τ • G ( x , t | x 0 , 0) = D x ( τ ) exp ˙ 4 D x (0)= x 0 0 1 • identifying the action of a free quantum particle with mass m = 2 D • G ( x , t | x 0 , 0) = � x | e − ˆ p 2 H t | x 0 � where ˆ H ≡ ˆ 2 m ≡ − D ∂ 2 x • In the eigenbasis of ˆ H ψ E ( x ) = E ψ E ( x ) (Schr¨ odinger equation) • � x | e − ˆ � H t | x 0 � = ψ E ( x ) ψ ∗ E ( x 0 ) e − Et E S.N. Majumdar The Wonderful World of Brownian Functionals

  2. Free propagator via path integral � x ( t )= x � t � − 1 � x 2 ( τ ) d τ • G ( x , t | x 0 , 0) = D x ( τ ) exp ˙ 4 D x (0)= x 0 0 1 • identifying the action of a free quantum particle with mass m = 2 D • G ( x , t | x 0 , 0) = � x | e − ˆ p 2 H t | x 0 � where ˆ H ≡ ˆ 2 m ≡ − D ∂ 2 x • In the eigenbasis of ˆ H ψ E ( x ) = E ψ E ( x ) (Schr¨ odinger equation) • � x | e − ˆ � H t | x 0 � = ψ E ( x ) ψ ∗ E ( x 0 ) e − Et E • For free particle, (Schr¨ odinger equation) reads: 2 π e ikx with E = Dk 2 − D ∂ 2 1 x ψ E ( x ) = E ψ E ( x ) → ψ k ( x ) = √ S.N. Majumdar The Wonderful World of Brownian Functionals

  3. Free propagator via path integral � x ( t )= x � t � − 1 � x 2 ( τ ) d τ • G ( x , t | x 0 , 0) = D x ( τ ) exp ˙ 4 D x (0)= x 0 0 1 • identifying the action of a free quantum particle with mass m = 2 D • G ( x , t | x 0 , 0) = � x | e − ˆ p 2 H t | x 0 � where ˆ H ≡ ˆ 2 m ≡ − D ∂ 2 x • In the eigenbasis of ˆ H ψ E ( x ) = E ψ E ( x ) (Schr¨ odinger equation) • � x | e − ˆ � H t | x 0 � = ψ E ( x ) ψ ∗ E ( x 0 ) e − Et E • For free particle, (Schr¨ odinger equation) reads: 2 π e ikx with E = Dk 2 − D ∂ 2 1 x ψ E ( x ) = E ψ E ( x ) → ψ k ( x ) = √ � dk • Free propagator: G ( x , t | x 0 , 0) = � x | e − ˆ 2 π e ik ( x − x 0 ) e − Dk 2 t H t | x 0 � = S.N. Majumdar The Wonderful World of Brownian Functionals

  4. Free propagator via path integral � x ( t )= x � t � − 1 � x 2 ( τ ) d τ • G ( x , t | x 0 , 0) = D x ( τ ) exp ˙ 4 D x (0)= x 0 0 1 • identifying the action of a free quantum particle with mass m = 2 D • G ( x , t | x 0 , 0) = � x | e − ˆ p 2 H t | x 0 � where ˆ H ≡ ˆ 2 m ≡ − D ∂ 2 x • In the eigenbasis of ˆ H ψ E ( x ) = E ψ E ( x ) (Schr¨ odinger equation) • � x | e − ˆ � H t | x 0 � = ψ E ( x ) ψ ∗ E ( x 0 ) e − Et E • For free particle, (Schr¨ odinger equation) reads: 2 π e ikx with E = Dk 2 − D ∂ 2 1 x ψ E ( x ) = E ψ E ( x ) → ψ k ( x ) = √ � dk • Free propagator: G ( x , t | x 0 , 0) = � x | e − ˆ 2 π e ik ( x − x 0 ) e − Dk 2 t H t | x 0 � = 1 − 1 4 Dt ( x − x 0 ) 2 � � = 4 π Dt exp √ S.N. Majumdar The Wonderful World of Brownian Functionals

  5. Brownian functional • Brownian path x ( τ ) propagating from x 0 at τ = 0 to x ( t ) = x at τ = t S.N. Majumdar The Wonderful World of Brownian Functionals

  6. Brownian functional • Brownian path x ( τ ) propagating from x 0 at τ = 0 to x ( t ) = x at τ = t � t • Brownian functional: T = U ( x ( τ )) d τ ) where U ( x ) → arbitrary 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  7. Brownian functional • Brownian path x ( τ ) propagating from x 0 at τ = 0 to x ( t ) = x at τ = t � t • Brownian functional: T = U ( x ( τ )) d τ ) where U ( x ) → arbitrary 0 • Clearly T → random variable–varies from path to path S.N. Majumdar The Wonderful World of Brownian Functionals

  8. Brownian functional • Brownian path x ( τ ) propagating from x 0 at τ = 0 to x ( t ) = x at τ = t � t • Brownian functional: T = U ( x ( τ )) d τ ) where U ( x ) → arbitrary 0 • Clearly T → random variable–varies from path to path Q: What is its probability distribution P ( T | x , t , x 0 ) ? S.N. Majumdar The Wonderful World of Brownian Functionals

  9. Brownian functional • Brownian path x ( τ ) propagating from x 0 at τ = 0 to x ( t ) = x at τ = t � t • Brownian functional: T = U ( x ( τ )) d τ ) where U ( x ) → arbitrary 0 • Clearly T → random variable–varies from path to path Q: What is its probability distribution P ( T | x , t , x 0 ) ? � t • Example: U ( x ) = x → T = 0 x ( τ ) d τ → area under the path x (τ) T=Area under the curve x x 0 t 0 τ S.N. Majumdar The Wonderful World of Brownian Functionals

  10. Brownian functional: Feynman-Kac formula S.N. Majumdar The Wonderful World of Brownian Functionals

  11. Feynman-Kac formula: main idea � t • Prob. distribution of T = 0 U ( x ( τ )) d τ is: � x ( t )= x � t � � � t x 2 ( τ ) d τ δ D x ( τ ) e − 1 0 ˙ P ( T | x , t , x 0 ) ∝ T − U ( x ( τ )) d τ 4 D x (0)= x 0 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  12. Feynman-Kac formula: main idea � t • Prob. distribution of T = 0 U ( x ( τ )) d τ is: � x ( t )= x � t � � � t x 2 ( τ ) d τ δ D x ( τ ) e − 1 0 ˙ P ( T | x , t , x 0 ) ∝ T − U ( x ( τ )) d τ 4 D x (0)= x 0 0 � ∞ P ( T | x , t , x 0 ) e − sT dT • Taking Laplace transform: ˜ P ( x , t | x 0 , s ) = 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  13. Feynman-Kac formula: main idea � t • Prob. distribution of T = 0 U ( x ( τ )) d τ is: � x ( t )= x � t � � � t x 2 ( τ ) d τ δ D x ( τ ) e − 1 0 ˙ P ( T | x , t , x 0 ) ∝ T − U ( x ( τ )) d τ 4 D x (0)= x 0 0 � ∞ P ( T | x , t , x 0 ) e − sT dT • Taking Laplace transform: ˜ P ( x , t | x 0 , s ) = 0 � x ( t )= x � t � t D x ( τ ) e − 1 x 2 ( τ ) d τ − s • ˜ 0 ˙ 0 U ( x ( τ )) d τ P ( x , t | x 0 , s ) ∝ 4 D x (0)= x 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  14. Feynman-Kac formula: main idea � t • Prob. distribution of T = 0 U ( x ( τ )) d τ is: � x ( t )= x � t � � � t x 2 ( τ ) d τ δ D x ( τ ) e − 1 0 ˙ P ( T | x , t , x 0 ) ∝ T − U ( x ( τ )) d τ 4 D x (0)= x 0 0 � ∞ P ( T | x , t , x 0 ) e − sT dT • Taking Laplace transform: ˜ P ( x , t | x 0 , s ) = 0 � x ( t )= x � t � t D x ( τ ) e − 1 x 2 ( τ ) d τ − s 0 U ( x ( τ )) d τ = � x | e − ˆ • ˜ 0 ˙ Ht | x 0 � P ( x , t | x 0 , s ) ∝ 4 D x (0)= x 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  15. Feynman-Kac formula: main idea � t • Prob. distribution of T = 0 U ( x ( τ )) d τ is: � x ( t )= x � t � � � t x 2 ( τ ) d τ δ D x ( τ ) e − 1 0 ˙ P ( T | x , t , x 0 ) ∝ T − U ( x ( τ )) d τ 4 D x (0)= x 0 0 � ∞ P ( T | x , t , x 0 ) e − sT dT • Taking Laplace transform: ˜ P ( x , t | x 0 , s ) = 0 � x ( t )= x � t � t D x ( τ ) e − 1 x 2 ( τ ) d τ − s 0 U ( x ( τ )) d τ = � x | e − ˆ • ˜ 0 ˙ Ht | x 0 � P ( x , t | x 0 , s ) ∝ 4 D x (0)= x 0 p 2 where ˆ H ≡ ˆ 2 m + sU ( x ) ≡ − D ∂ 2 x + sU ( x ) S.N. Majumdar The Wonderful World of Brownian Functionals

  16. Feynman-Kac formula: main idea � t • Prob. distribution of T = 0 U ( x ( τ )) d τ is: � x ( t )= x � t � � � t x 2 ( τ ) d τ δ D x ( τ ) e − 1 0 ˙ P ( T | x , t , x 0 ) ∝ T − U ( x ( τ )) d τ 4 D x (0)= x 0 0 � ∞ P ( T | x , t , x 0 ) e − sT dT • Taking Laplace transform: ˜ P ( x , t | x 0 , s ) = 0 � x ( t )= x � t � t D x ( τ ) e − 1 x 2 ( τ ) d τ − s 0 U ( x ( τ )) d τ = � x | e − ˆ • ˜ 0 ˙ Ht | x 0 � P ( x , t | x 0 , s ) ∝ 4 D x (0)= x 0 p 2 where ˆ H ≡ ˆ 2 m + sU ( x ) ≡ − D ∂ 2 x + sU ( x ) Functional sU ( x ) → quantum potential in Shr¨ odinger equation S.N. Majumdar The Wonderful World of Brownian Functionals

  17. Feynman-Kac formula: main idea � t • Prob. distribution of T = 0 U ( x ( τ )) d τ is: � x ( t )= x � t � � � t x 2 ( τ ) d τ δ D x ( τ ) e − 1 0 ˙ P ( T | x , t , x 0 ) ∝ T − U ( x ( τ )) d τ 4 D x (0)= x 0 0 � ∞ P ( T | x , t , x 0 ) e − sT dT • Taking Laplace transform: ˜ P ( x , t | x 0 , s ) = 0 � x ( t )= x � t � t D x ( τ ) e − 1 x 2 ( τ ) d τ − s 0 U ( x ( τ )) d τ = � x | e − ˆ • ˜ 0 ˙ Ht | x 0 � P ( x , t | x 0 , s ) ∝ 4 D x (0)= x 0 p 2 where ˆ H ≡ ˆ 2 m + sU ( x ) ≡ − D ∂ 2 x + sU ( x ) Functional sU ( x ) → quantum potential in Shr¨ odinger equation odinger equation): [ − D ∂ 2 1 . Solve (Schr¨ x + sU ( x )] ψ E ( x ) = E ψ E ( x ) S.N. Majumdar The Wonderful World of Brownian Functionals

  18. Feynman-Kac formula: main idea � t • Prob. distribution of T = 0 U ( x ( τ )) d τ is: � x ( t )= x � t � � � t x 2 ( τ ) d τ δ D x ( τ ) e − 1 0 ˙ P ( T | x , t , x 0 ) ∝ T − U ( x ( τ )) d τ 4 D x (0)= x 0 0 � ∞ P ( T | x , t , x 0 ) e − sT dT • Taking Laplace transform: ˜ P ( x , t | x 0 , s ) = 0 � x ( t )= x � t � t D x ( τ ) e − 1 x 2 ( τ ) d τ − s 0 U ( x ( τ )) d τ = � x | e − ˆ • ˜ 0 ˙ Ht | x 0 � P ( x , t | x 0 , s ) ∝ 4 D x (0)= x 0 p 2 where ˆ H ≡ ˆ 2 m + sU ( x ) ≡ − D ∂ 2 x + sU ( x ) Functional sU ( x ) → quantum potential in Shr¨ odinger equation odinger equation): [ − D ∂ 2 1 . Solve (Schr¨ x + sU ( x )] ψ E ( x ) = E ψ E ( x ) P ( x , t | x 0 , s ) = � x | e − ˆ ˜ � H t | x 0 � = ψ E ( x ) ψ ∗ E ( x 0 ) e − Et 2 . E S.N. Majumdar The Wonderful World of Brownian Functionals

  19. Feynman-Kac formula: main idea � t • Prob. distribution of T = 0 U ( x ( τ )) d τ is: � x ( t )= x � t � � � t x 2 ( τ ) d τ δ D x ( τ ) e − 1 0 ˙ P ( T | x , t , x 0 ) ∝ T − U ( x ( τ )) d τ 4 D x (0)= x 0 0 � ∞ P ( T | x , t , x 0 ) e − sT dT • Taking Laplace transform: ˜ P ( x , t | x 0 , s ) = 0 � x ( t )= x � t � t D x ( τ ) e − 1 x 2 ( τ ) d τ − s 0 U ( x ( τ )) d τ = � x | e − ˆ • ˜ 0 ˙ Ht | x 0 � P ( x , t | x 0 , s ) ∝ 4 D x (0)= x 0 p 2 where ˆ H ≡ ˆ 2 m + sU ( x ) ≡ − D ∂ 2 x + sU ( x ) Functional sU ( x ) → quantum potential in Shr¨ odinger equation odinger equation): [ − D ∂ 2 1 . Solve (Schr¨ x + sU ( x )] ψ E ( x ) = E ψ E ( x ) P ( x , t | x 0 , s ) = � x | e − ˆ ˜ � H t | x 0 � = ψ E ( x ) ψ ∗ E ( x 0 ) e − Et 2 . E 3 . Finally invert the Laplace transform ˜ P ( x , t | x 0 , s ) w.r.t s S.N. Majumdar The Wonderful World of Brownian Functionals

  20. Examples of Brownian functionals � t • Residence (Occupation) time: T = θ ( x ( τ )) d τ → U ( x ) = θ ( x ) 0 P ( T , t | x 0 = 0) = 1 1 ( L´ evy, ’39, Lamperti, ’57 ) π � T ( t − T ) important observable with many recent applications: nonequilibrium dynamics of growing domains, ergodicity properties in anomalous diffusion, transport in disordered systems, blinking quantum dots ... (Barkai, Bouchaud, Bray, Comtet, Godr` eche, Luck, S.M., Monthus, ....) S.N. Majumdar The Wonderful World of Brownian Functionals

  21. Examples of Brownian functionals � t • Residence (Occupation) time: T = θ ( x ( τ )) d τ → U ( x ) = θ ( x ) 0 P ( T , t | x 0 = 0) = 1 1 ( L´ evy, ’39, Lamperti, ’57 ) π � T ( t − T ) important observable with many recent applications: nonequilibrium dynamics of growing domains, ergodicity properties in anomalous diffusion, transport in disordered systems, blinking quantum dots ... (Barkai, Bouchaud, Bray, Comtet, Godr` eche, Luck, S.M., Monthus, ....) • Finance: stock price S ( τ ) = e − β x ( τ ) where x ( τ ) → Brownian motion ( Black-Scholes model, 1973 ) S.N. Majumdar The Wonderful World of Brownian Functionals

  22. Examples of Brownian functionals � t • Residence (Occupation) time: T = θ ( x ( τ )) d τ → U ( x ) = θ ( x ) 0 P ( T , t | x 0 = 0) = 1 1 ( L´ evy, ’39, Lamperti, ’57 ) π � T ( t − T ) important observable with many recent applications: nonequilibrium dynamics of growing domains, ergodicity properties in anomalous diffusion, transport in disordered systems, blinking quantum dots ... (Barkai, Bouchaud, Bray, Comtet, Godr` eche, Luck, S.M., Monthus, ....) • Finance: stock price S ( τ ) = e − β x ( τ ) where x ( τ ) → Brownian motion ( Black-Scholes model, 1973 ) � t 0 e − β x ( τ ) d τ → U ( x ) = e − β x ( M. Yor, ... ) Integrated stock price: T = S.N. Majumdar The Wonderful World of Brownian Functionals

  23. Examples of Brownian functionals � t • Residence (Occupation) time: T = θ ( x ( τ )) d τ → U ( x ) = θ ( x ) 0 P ( T , t | x 0 = 0) = 1 1 ( L´ evy, ’39, Lamperti, ’57 ) π � T ( t − T ) important observable with many recent applications: nonequilibrium dynamics of growing domains, ergodicity properties in anomalous diffusion, transport in disordered systems, blinking quantum dots ... (Barkai, Bouchaud, Bray, Comtet, Godr` eche, Luck, S.M., Monthus, ....) • Finance: stock price S ( τ ) = e − β x ( τ ) where x ( τ ) → Brownian motion ( Black-Scholes model, 1973 ) � t 0 e − β x ( τ ) d τ → U ( x ) = e − β x ( M. Yor, ... ) Integrated stock price: T = T → partition function of the Sinai model in a box [0 , t ] S.N. Majumdar The Wonderful World of Brownian Functionals

  24. Examples of Brownian functionals � t • Residence (Occupation) time: T = θ ( x ( τ )) d τ → U ( x ) = θ ( x ) 0 P ( T , t | x 0 = 0) = 1 1 ( L´ evy, ’39, Lamperti, ’57 ) π � T ( t − T ) important observable with many recent applications: nonequilibrium dynamics of growing domains, ergodicity properties in anomalous diffusion, transport in disordered systems, blinking quantum dots ... (Barkai, Bouchaud, Bray, Comtet, Godr` eche, Luck, S.M., Monthus, ....) • Finance: stock price S ( τ ) = e − β x ( τ ) where x ( τ ) → Brownian motion ( Black-Scholes model, 1973 ) � t 0 e − β x ( τ ) d τ → U ( x ) = e − β x ( M. Yor, ... ) Integrated stock price: T = T → partition function of the Sinai model in a box [0 , t ] • Other examples: “Brownian functionals in physics and computer science” [review by S.M. in Current Science, (2005), cond-mat/0510064 ] S.N. Majumdar The Wonderful World of Brownian Functionals

  25. Fluctuating (1 + 1) -dimensional interfaces • Fluctuating steps on crystals such as Si, Al(111),.. • diploar chains of non-magnetic particles in a ferrofluid ... S.N. Majumdar The Wonderful World of Brownian Functionals

  26. Fluctuating (1 + 1) -dimensional interface Fluctuating Interface height H(x,t) x L 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  27. Fluctuating (1 + 1) -dimensional interface Fluctuating Interface height H(x,t) x L 0 • Fluctuating interfaces → very well studied x H + λ ( ∂ x H ) 2 + η ( x , t ) ( Kardar, Parisi, Zhang, 1986 ) ∂ t H = ∂ 2 S.N. Majumdar The Wonderful World of Brownian Functionals

  28. Fluctuating (1 + 1) -dimensional interface Fluctuating Interface height H(x,t) x L 0 • Fluctuating interfaces → very well studied x H + λ ( ∂ x H ) 2 + η ( x , t ) ( Kardar, Parisi, Zhang, 1986 ) ∂ t H = ∂ 2 • λ = 0 → Linear interface ( Hammersley, ’66, Edwards-Wilkinson, ’81 ) S.N. Majumdar The Wonderful World of Brownian Functionals

  29. • Relevant object that measures fluctuations � L h ( x , t ) = H ( x , t ) − 1 H ( x , t ) dx → relative height L 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  30. • Relevant object that measures fluctuations � L h ( x , t ) = H ( x , t ) − 1 H ( x , t ) dx → relative height L 0 � L By definition: h ( x , t ) dx = 0 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  31. • Relevant object that measures fluctuations � L h ( x , t ) = H ( x , t ) − 1 H ( x , t ) dx → relative height L 0 � L By definition: h ( x , t ) dx = 0 0 • Width of the interface: � h 2 ( x , t ) � ∼ t β for ξ ( t ) ∼ t 1 / z << L � w ( t , L ) = (growing regime) ∼ L 1 / 2 for ξ ( t ) ∼ t 1 / z >> L (steady state) S.N. Majumdar The Wonderful World of Brownian Functionals

  32. • Relevant object that measures fluctuations � L h ( x , t ) = H ( x , t ) − 1 H ( x , t ) dx → relative height L 0 � L By definition: h ( x , t ) dx = 0 0 • Width of the interface: � h 2 ( x , t ) � ∼ t β for ξ ( t ) ∼ t 1 / z << L � w ( t , L ) = (growing regime) ∼ L 1 / 2 for ξ ( t ) ∼ t 1 / z >> L (steady state) • β = 1 / 3 and z = 3 / 2 (for KPZ, λ > 0) • β = 1 / 4 and z = 2 (for EW, λ = 0) S.N. Majumdar The Wonderful World of Brownian Functionals

  33. • Relevant object that measures fluctuations � L h ( x , t ) = H ( x , t ) − 1 H ( x , t ) dx → relative height L 0 � L By definition: h ( x , t ) dx = 0 0 • Width of the interface: � h 2 ( x , t ) � ∼ t β for ξ ( t ) ∼ t 1 / z << L � w ( t , L ) = (growing regime) ∼ L 1 / 2 for ξ ( t ) ∼ t 1 / z >> L (steady state) • β = 1 / 3 and z = 3 / 2 (for KPZ, λ > 0) • β = 1 / 4 and z = 2 (for EW, λ = 0) • Full distribution of w 2 ( t , L ) = h 2 ( x , t ) → in the steady state → Exact solution ( G. Foltin, K. Oerding, Z. Racz, R.L. Workman, R.K.P. Zia, 1994) S.N. Majumdar The Wonderful World of Brownian Functionals

  34. Extreme Relative Height Recent interest in Extreme height fluctuations (Rare Events) h m = max 0 ≤ x ≤ L { h ( x , t ) } → maximal relative height (MRH) S.N. Majumdar The Wonderful World of Brownian Functionals

  35. Extreme Relative Height Recent interest in Extreme height fluctuations (Rare Events) h m = max 0 ≤ x ≤ L { h ( x , t ) } → maximal relative height (MRH) In particular, in the steady state regime t >> L z where the heights at different points are strongly correlated ( ξ ( t ) >> L ) Q: Prob. distr. of h m : P ( h m , L ) =? S.N. Majumdar The Wonderful World of Brownian Functionals

  36. S.N. Majumdar The Wonderful World of Brownian Functionals

  37. Exact solution via Path Integral method M h(x) h m L 0 x • h m = max 0 ≤ x ≤ L { h ( x , t ) } → maximal relative height • Cumulative distribution of h m in the steady state ( t 1 / z >> L ) F ( M , L ) = Prob [ h m ≤ M , L ] = ⇒ Prob . that the path stays below the level M over x ∈ [0 , L ] S.N. Majumdar The Wonderful World of Brownian Functionals

  38. Path Integral with Constraint • Joint distribution of relative heights (steady state) for (1 + 1)-dim. KPZ interfaces: � L � � 2 � − 1 � ∂ h Prob . [ { h ( x } ] ∝ exp dx 2 ∂ x 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  39. Path Integral with Constraint • Joint distribution of relative heights (steady state) for (1 + 1)-dim. KPZ interfaces: � L �� L � � 2 � � − 1 � ∂ h Prob . [ { h ( x } ] ∝ exp × δ h ( x ) dx dx 2 ∂ x 0 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  40. Path Integral with Constraint • Joint distribution of relative heights (steady state) for (1 + 1)-dim. KPZ interfaces: � L �� L � � 2 � � − 1 � ∂ h Prob . [ { h ( x } ] ∝ exp × δ h ( x ) dx dx 2 ∂ x 0 0 • Cumulative distribution F ( M , L ) ≡ Prob . that the path stays below M S.N. Majumdar The Wonderful World of Brownian Functionals

  41. Path Integral with Constraint • Joint distribution of relative heights (steady state) for (1 + 1)-dim. KPZ interfaces: � L �� L � � 2 � � − 1 � ∂ h Prob . [ { h ( x } ] ∝ exp × δ h ( x ) dx dx 2 ∂ x 0 0 • Cumulative distribution F ( M , L ) ≡ Prob . that the path stays below M � M � h ( L )= h 0 �� L � � L 0 ( ∂ x h ) 2 dx × δ D h ( x ) e − 1 F ( M , L ) ∝ h ( x ) dx dh 0 2 −∞ h (0)= h 0 0 � × “ θ ( M − h ( x )) ” 0 ≤ x ≤ L S.N. Majumdar The Wonderful World of Brownian Functionals

  42. Path Integral with Constraint • Joint distribution of relative heights (steady state) for (1 + 1)-dim. KPZ interfaces: � L �� L � � 2 � � − 1 � ∂ h Prob . [ { h ( x } ] ∝ exp × δ h ( x ) dx dx 2 ∂ x 0 0 • Cumulative distribution F ( M , L ) ≡ Prob . that the path stays below M � M � h ( L )= h 0 �� L � � L 0 ( ∂ x h ) 2 dx × δ D h ( x ) e − 1 F ( M , L ) ∝ h ( x ) dx dh 0 2 −∞ h (0)= h 0 0 � × “ θ ( M − h ( x )) ” 0 ≤ x ≤ L • Identify x ≡ τ and change variable M − h ( x ) ≡ x ( τ ): � ∞ � x ( L )= x 0 �� L � � L 0 ( ∂ τ x ) 2 d τ × δ D x ( τ ) e − 1 F ( M , L ) ∝ x ( τ ) d τ − ML dx 0 2 0 x (0)= x 0 0 � × “ θ ( x ( τ )) ” 0 ≤ τ ≤ L S.N. Majumdar The Wonderful World of Brownian Functionals

  43. Path Integral with Constraint • Joint distribution of relative heights (steady state) for (1 + 1)-dim. KPZ interfaces: � L �� L � � 2 � � − 1 � ∂ h Prob . [ { h ( x } ] ∝ exp × δ h ( x ) dx dx 2 ∂ x 0 0 • Cumulative distribution F ( M , L ) ≡ Prob . that the path stays below M � M � h ( L )= h 0 �� L � � L 0 ( ∂ x h ) 2 dx × δ D h ( x ) e − 1 F ( M , L ) ∝ h ( x ) dx dh 0 2 −∞ h (0)= h 0 0 � × “ θ ( M − h ( x )) ” 0 ≤ x ≤ L • Identify x ≡ τ and change variable M − h ( x ) ≡ x ( τ ): � ∞ � x ( L )= x 0 �� L � � L 0 ( ∂ τ x ) 2 d τ × δ D x ( τ ) e − 1 F ( M , L ) ∝ x ( τ ) d τ − ML dx 0 2 0 x (0)= x 0 0 � × “ θ ( x ( τ )) ” 0 ≤ τ ≤ L • Now apply Feynman-Kac technique S.N. Majumdar The Wonderful World of Brownian Functionals

  44. Path Integral with Constraint • Joint distribution of relative heights (steady state) for (1 + 1)-dim. KPZ interfaces: � L �� L � � 2 � � − 1 � ∂ h Prob . [ { h ( x } ] ∝ exp × δ h ( x ) dx dx 2 ∂ x 0 0 • Cumulative distribution F ( M , L ) ≡ Prob . that the path stays below M � M � h ( L )= h 0 �� L � � L 0 ( ∂ x h ) 2 dx × δ D h ( x ) e − 1 F ( M , L ) ∝ h ( x ) dx dh 0 2 −∞ h (0)= h 0 0 � × “ θ ( M − h ( x )) ” 0 ≤ x ≤ L • Identify x ≡ τ and change variable M − h ( x ) ≡ x ( τ ): � ∞ � x ( L )= x 0 �� L � � L 0 ( ∂ τ x ) 2 d τ × δ D x ( τ ) e − 1 F ( M , L ) ∝ x ( τ ) d τ − ML dx 0 2 0 x (0)= x 0 0 � × “ θ ( x ( τ )) ” 0 ≤ τ ≤ L • Now apply Feynman-Kac technique → take Laplace transform S.N. Majumdar The Wonderful World of Brownian Functionals

  45. Exact Results � ∞ � ∞ F ( M , L ) e − sM L dM ∝ � H L � dx 0 � x 0 | e − ˆ e − ˆ H L | x 0 � = Tr • 0 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  46. Exact Results � ∞ � ∞ F ( M , L ) e − sM L dM ∝ � H L � dx 0 � x 0 | e − ˆ e − ˆ H L | x 0 � = Tr • 0 0 with ˆ H ≡ − 1 2 ∂ 2 x + V ( x ) where the quantum potential V ( x ) = s x for x > 0 = ∞ for x < 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  47. Exact Results � ∞ � ∞ F ( M , L ) e − sM L dM ∝ � H L � dx 0 � x 0 | e − ˆ e − ˆ H L | x 0 � = Tr • 0 0 with ˆ H ≡ − 1 2 ∂ 2 x + V ( x ) where the quantum potential V ( x ) = s x for x > 0 = ∞ for x < 0 Schr¨ odinger eq. in a traingular potential → exactly solvable S.N. Majumdar The Wonderful World of Brownian Functionals

  48. Exact Results � ∞ � ∞ F ( M , L ) e − sM L dM ∝ � H L � dx 0 � x 0 | e − ˆ e − ˆ H L | x 0 � = Tr • 0 0 with ˆ H ≡ − 1 2 ∂ 2 x + V ( x ) where the quantum potential V ( x ) = s x for x > 0 = ∞ for x < 0 Schr¨ odinger eq. in a traingular potential → exactly solvable • Prob. density of h m : P ( h m , L ) = ∂ M F ( M , L ) | M = h m S.N. Majumdar The Wonderful World of Brownian Functionals

  49. Exact Results � ∞ � ∞ F ( M , L ) e − sM L dM ∝ � H L � dx 0 � x 0 | e − ˆ e − ˆ H L | x 0 � = Tr • 0 0 with ˆ H ≡ − 1 2 ∂ 2 x + V ( x ) where the quantum potential V ( x ) = s x for x > 0 = ∞ for x < 0 Schr¨ odinger eq. in a traingular potential → exactly solvable • Prob. density of h m : P ( h m , L ) = ∂ M F ( M , L ) | M = h m � � 1 h m = ⇒ P ( h m , L ) = L f where √ √ L S.N. Majumdar The Wonderful World of Brownian Functionals

  50. Exact Results � ∞ � ∞ F ( M , L ) e − sM L dM ∝ � H L � dx 0 � x 0 | e − ˆ e − ˆ H L | x 0 � = Tr • 0 0 with ˆ H ≡ − 1 2 ∂ 2 x + V ( x ) where the quantum potential V ( x ) = s x for x > 0 = ∞ for x < 0 Schr¨ odinger eq. in a traingular potential → exactly solvable • Prob. density of h m : P ( h m , L ) = ∂ M F ( M , L ) | M = h m � � 1 h m = ⇒ P ( h m , L ) = L f where √ √ L � ∞ ∞ √ e − α k 2 − 1 / 3 s 2 / 3 f ( x ) e − s x dx = s � 2 π 0 k =1 where α k ’s → zeroes of Airy function Ai(z) [S.M. and A. Comtet, PRL, 92 , 225501 (2004); J. Stat. Phys. 119, 777 (2005)] S.N. Majumdar The Wonderful World of Brownian Functionals

  51. Exact Results � ∞ � ∞ F ( M , L ) e − sM L dM ∝ � H L � dx 0 � x 0 | e − ˆ e − ˆ H L | x 0 � = Tr • 0 0 with ˆ H ≡ − 1 2 ∂ 2 x + V ( x ) where the quantum potential V ( x ) = s x for x > 0 = ∞ for x < 0 Schr¨ odinger eq. in a traingular potential → exactly solvable • Prob. density of h m : P ( h m , L ) = ∂ M F ( M , L ) | M = h m � � 1 h m = ⇒ P ( h m , L ) = L f where √ √ L � ∞ ∞ √ e − α k 2 − 1 / 3 s 2 / 3 f ( x ) e − s x dx = s � 2 π 0 k =1 where α k ’s → zeroes of Airy function Ai(z) [S.M. and A. Comtet, PRL, 92 , 225501 (2004); J. Stat. Phys. 119, 777 (2005)] • The Laplace transform can be inverted → exact asymptotics S.N. Majumdar The Wonderful World of Brownian Functionals

  52. The scaling function f ( x ) √ ∞ f ( x ) = 2 6 e − b k / x 2 U ( − 5 / 6 , 4 / 3 , b k / x 2 ) , b k = 2 α 3 b 2 / 3 � k / 27 k x 10 / 3 k =1 S.N. Majumdar The Wonderful World of Brownian Functionals

  53. The scaling function f ( x ) √ ∞ f ( x ) = 2 6 e − b k / x 2 U ( − 5 / 6 , 4 / 3 , b k / x 2 ) , b k = 2 α 3 b 2 / 3 � k / 27 k x 10 / 3 k =1 U ( a , b , z ) → Kummer’s function and α k → zeroes of Airy function Ai ( z ) S.N. Majumdar The Wonderful World of Brownian Functionals

  54. The scaling function f ( x ) √ ∞ f ( x ) = 2 6 e − b k / x 2 U ( − 5 / 6 , 4 / 3 , b k / x 2 ) , b k = 2 α 3 b 2 / 3 � k / 27 k x 10 / 3 k =1 U ( a , b , z ) → Kummer’s function and α k → zeroes of Airy function Ai ( z ) � − 2 α 3 � 81 α 9 / 2 x − 5 exp 8 Asymptotics: f ( x ) ≈ as x → 0 ( α 1 = 2 . 3381 .. ) 1 1 27 x 2 √ √ π x 2 e − 6 x 2 ≈ 72 6 as x → ∞ S.N. Majumdar The Wonderful World of Brownian Functionals

  55. The scaling function f ( x ) √ ∞ f ( x ) = 2 6 e − b k / x 2 U ( − 5 / 6 , 4 / 3 , b k / x 2 ) , b k = 2 α 3 b 2 / 3 � k / 27 k x 10 / 3 k =1 U ( a , b , z ) → Kummer’s function and α k → zeroes of Airy function Ai ( z ) � − 2 α 3 � 81 α 9 / 2 x − 5 exp 8 Asymptotics: f ( x ) ≈ as x → 0 ( α 1 = 2 . 3381 .. ) 1 1 27 x 2 √ √ π x 2 e − 6 x 2 ≈ 72 6 as x → ∞ S.N. Majumdar The Wonderful World of Brownian Functionals

  56. Airy distribution function √ ∞ e − b k / x 2 U ( − 5 / 6 , 4 / 3 , b k / x 2 ) , b k = 2 α 3 f ( x ) = 2 6 b 2 / 3 � k / 27 k x 10 / 3 k =1 S.N. Majumdar The Wonderful World of Brownian Functionals

  57. Airy distribution function √ ∞ e − b k / x 2 U ( − 5 / 6 , 4 / 3 , b k / x 2 ) , b k = 2 α 3 f ( x ) = 2 6 b 2 / 3 � k / 27 k x 10 / 3 k =1 − 2 α 3 x − 5 exp � � 81 α 9 / 2 8 Asymptotics: f ( x ) ≈ 1 as x → 0 ( α 1 = 2 . 3381 .. ) 1 27 x 2 √ √ π x 2 e − 6 x 2 ≈ 72 6 as x → ∞ S.N. Majumdar The Wonderful World of Brownian Functionals

  58. Airy distribution function √ ∞ e − b k / x 2 U ( − 5 / 6 , 4 / 3 , b k / x 2 ) , b k = 2 α 3 f ( x ) = 2 6 b 2 / 3 � k / 27 k x 10 / 3 k =1 − 2 α 3 x − 5 exp � � 81 α 9 / 2 8 Asymptotics: f ( x ) ≈ 1 as x → 0 ( α 1 = 2 . 3381 .. ) 1 27 x 2 √ √ π x 2 e − 6 x 2 ≈ 72 6 as x → ∞ • A number of discrete SOS models → same f ( x ) ( G. Schehr & S.M, 2006 ) S.N. Majumdar The Wonderful World of Brownian Functionals

  59. Airy distribution function √ ∞ e − b k / x 2 U ( − 5 / 6 , 4 / 3 , b k / x 2 ) , b k = 2 α 3 f ( x ) = 2 6 b 2 / 3 � k / 27 k x 10 / 3 k =1 − 2 α 3 x − 5 exp � � 81 α 9 / 2 8 Asymptotics: f ( x ) ≈ 1 as x → 0 ( α 1 = 2 . 3381 .. ) 1 27 x 2 √ √ π x 2 e − 6 x 2 ≈ 72 6 as x → ∞ • A number of discrete SOS models → same f ( x ) ( G. Schehr & S.M, 2006 ) • Amazingly, the same f ( x ) appears in a number of problems in graph theory and computer science: • total path length in rooted planar trees ( Takacs, ’94 ) • connected components in a random graph ( Flajolet, Knuth, Pittel, ’89 ) . . . f ( x ) → Airy distribution function ( Janson & Louchard, 2007 ) S.N. Majumdar The Wonderful World of Brownian Functionals

  60. Airy distribution function √ ∞ e − b k / x 2 U ( − 5 / 6 , 4 / 3 , b k / x 2 ) , b k = 2 α 3 f ( x ) = 2 6 b 2 / 3 � k / 27 k x 10 / 3 k =1 − 2 α 3 x − 5 exp � � 81 α 9 / 2 8 Asymptotics: f ( x ) ≈ 1 as x → 0 ( α 1 = 2 . 3381 .. ) 1 27 x 2 √ √ π x 2 e − 6 x 2 ≈ 72 6 as x → ∞ • A number of discrete SOS models → same f ( x ) ( G. Schehr & S.M, 2006 ) • Amazingly, the same f ( x ) appears in a number of problems in graph theory and computer science: • total path length in rooted planar trees ( Takacs, ’94 ) • connected components in a random graph ( Flajolet, Knuth, Pittel, ’89 ) . . . f ( x ) → Airy distribution function ( Janson & Louchard, 2007 ) • Other measures of extreme fluctuations → studied recently ( Burkhardt, Gy¨ cz, 2007, Rambeau & Schehr, 2009 ) orgyi, Moloney, Ra´ S.N. Majumdar The Wonderful World of Brownian Functionals

  61. First-passage Brownian Functional Brownian motion till its first−passage through 0 two different realizations x (τ) x 0 t f t f 0 τ dx • Brownian motion: d τ = η ( τ ) where η ( τ ) → Gaussian white noise S.N. Majumdar The Wonderful World of Brownian Functionals

  62. First-passage Brownian Functional Brownian motion till its first−passage through 0 two different realizations x (τ) x 0 t f t f 0 τ dx • Brownian motion: d τ = η ( τ ) where η ( τ ) → Gaussian white noise • The process, starting at fixed x 0 , stops when the particle hits x = 0 t f → first-passage time → random variable S.N. Majumdar The Wonderful World of Brownian Functionals

  63. First-passage Brownian Functional Brownian motion till its first−passage through 0 two different realizations x (τ) x 0 t f t f 0 τ dx • Brownian motion: d τ = η ( τ ) where η ( τ ) → Gaussian white noise • The process, starting at fixed x 0 , stops when the particle hits x = 0 t f → first-passage time → random variable � t f • first-passage functional: T = U ( x ( τ )) d τ ; Question : P ( T | x 0 ) ? 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  64. First-passage Brownian Functional Brownian motion till its first−passage through 0 two different realizations x (τ) x 0 t f t f 0 τ dx • Brownian motion: d τ = η ( τ ) where η ( τ ) → Gaussian white noise • The process, starting at fixed x 0 , stops when the particle hits x = 0 t f → first-passage time → random variable � t f • first-passage functional: T = U ( x ( τ )) d τ ; Question : P ( T | x 0 ) ? 0 • Ex: (i) If U ( x ) = 1, T = t f � t f (ii) If U ( x ) = x , T = 0 x ( τ ) d τ → area till first-passage time S.N. Majumdar The Wonderful World of Brownian Functionals

  65. Queueing theory: busy period l n = l n−1 + η n �� �� �� �� �� �� � � � � � � � � � � � � queue �� �� �� �� �� �� length ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� � � l n 6 � � 4 5 5 6 3 4 4 4 5 6 2 3 3 3 4 5 6 1 2 2 2 3 4 5 6 busy period time n • Queue length: l n = l n − 1 + η n η n = 1 if a new customer arrives = − 1 when a customer gets served S.N. Majumdar The Wonderful World of Brownian Functionals

  66. Queueing theory: busy period l n = l n−1 + η n �� �� �� �� �� �� � � � � � � � � � � � � queue �� �� �� �� �� �� length ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� � � l n 6 � � 4 5 5 6 3 4 4 4 5 6 2 3 3 3 4 5 6 1 2 2 2 3 4 5 6 busy period time n • Queue length: l n = l n − 1 + η n η n = 1 if a new customer arrives = − 1 when a customer gets served • T ≡ total waiting time of all customers during the busy period ≡ area under the curve S.N. Majumdar The Wonderful World of Brownian Functionals

  67. Queueing theory: busy period l n = l n−1 + η n �� �� �� �� �� �� � � � � � � � � � � � � queue �� �� �� �� �� �� length ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� � � l n 6 � � 4 5 5 6 3 4 4 4 5 6 2 3 3 3 4 5 6 1 2 2 2 3 4 5 6 busy period time n • Queue length: l n = l n − 1 + η n η n = 1 if a new customer arrives = − 1 when a customer gets served • T ≡ total waiting time of all customers during the busy period ≡ area under the curve • Continuum limit: l n → x ( τ ) → dx d τ = η ( τ ) → Brownian motion S.N. Majumdar The Wonderful World of Brownian Functionals

  68. Queueing theory: busy period l n = l n−1 + η n �� �� �� �� �� �� � � � � � � � � � � � � queue �� �� �� �� �� �� length ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� � � l n 6 � � 4 5 5 6 3 4 4 4 5 6 2 3 3 3 4 5 6 1 2 2 2 3 4 5 6 busy period time n • Queue length: l n = l n − 1 + η n η n = 1 if a new customer arrives = − 1 when a customer gets served • T ≡ total waiting time of all customers during the busy period ≡ area under the curve • Continuum limit: l n → x ( τ ) → dx d τ = η ( τ ) → Brownian motion � t f T ≡ A = 0 x ( τ ) d τ → area till the first-passage time; P ( A | x 0 ) = ? S.N. Majumdar The Wonderful World of Brownian Functionals

  69. First-passage Brownian functional Brownian motion till its first−passage through 0 x (τ) • dx d τ = η ( τ ); x (0) = x 0 x 0 + ∆ x � t f • T = 0 U ( x ( τ )) d τ x 0 • P ( T | x 0 ) =? t f 0 τ ∆τ S.N. Majumdar The Wonderful World of Brownian Functionals

  70. First-passage Brownian functional Brownian motion till its first−passage through 0 x (τ) • dx d τ = η ( τ ); x (0) = x 0 x 0 + ∆ x � t f • T = 0 U ( x ( τ )) d τ x 0 • P ( T | x 0 ) =? t f 0 τ ∆τ � ∞ P ( T | x 0 ) e − s T dT • Laplace transform: ˜ P s ( x 0 ) = 0 S.N. Majumdar The Wonderful World of Brownian Functionals

  71. First-passage Brownian functional Brownian motion till its first−passage through 0 x (τ) • dx d τ = η ( τ ); x (0) = x 0 x 0 + ∆ x � t f • T = 0 U ( x ( τ )) d τ x 0 • P ( T | x 0 ) =? t f 0 τ ∆τ � ∞ � tf P ( T | x 0 ) e − s T dT ≡ � e − s • Laplace transform: ˜ U ( x ( τ )) d τ � P s ( x 0 ) = 0 0 S.N. Majumdar The Wonderful World of Brownian Functionals

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend