the symplectic geometry of symmetric products and
play

The symplectic geometry of symmetric products and invariants of - PowerPoint PPT Presentation

The symplectic geometry of symmetric products and invariants of 3-manifolds with boundary Denis Auroux UC Berkeley AMS Invited Address Joint Mathematics Meetings New Orleans, January 2011 builds on work of: R. Lipshitz, P. Ozsv ath, D.


  1. The symplectic geometry of symmetric products and invariants of 3-manifolds with boundary Denis Auroux UC Berkeley AMS Invited Address – Joint Mathematics Meetings New Orleans, January 2011 builds on work of: R. Lipshitz, P. Ozsv´ ath, D. Thurston; T. Perutz, Y. Lekili M. Abouzaid, P. Seidel; S. Ma’u, K. Wehrheim, C. Woodward Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 1 / 13

  2. Low-dimensional topology Goal: find invariants to distinguish smooth manifolds Dimensions 3 and 4 hardest (Poincar´ e conjecture, . . . ) Exotic smooth 4-manifolds (homeomorphic, not diffeomorphic) Smooth 3- and 4-manifold invariants (beyond algebraic topology) 80’s Donaldson invariants 90’s Seiberg-Witten invariants increasingly computable and versatile 00’s Ozsv´ ath-Szab´ o invariants ❄ These all associate numerical invariants to closed 4-manifolds, and (graded) abelian groups to closed 3-manifolds. But the story goes further! Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 2 / 13

  3. Heegaard-Floer TQFT Ozsv´ ath-Szab´ o (2000) Y 3 closed � � HF ( Y ) abelian group (Heegaard-Floer homology) W 4 cobordism ( ∂ W = Y 2 − Y 1 ) � � F W : � HF ( Y 1 ) → � HF ( Y 2 ) (and more) Extend to surfaces and 3-manifolds with boundary? Σ surface � category C (Σ)? Y 3 with boundary ∂ Y = Σ � object C ( Y ) ∈ C (Σ)? cobordism ∂ Y = Σ 2 − Σ 1 � functor C (Σ 1 ) → C (Σ 2 )? Want: � HF ( Y 1 ∪ Σ Y 2 ) = hom C (Σ) ( C ( Y 1 ) , C ( Y 2 )) (pairing theorem) This can be done in 2 equivalent ways: bordered Heegaard-Floer homology (Lipshitz-Ozsv´ ath-Thurston 2008, more computable), or geometry of Lagrangian correspondences (Lekili-Perutz 2010, more conceptual). Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 3 / 13

  4. Plan of the talk Heegaard-Floer homology Background: Floer homology, Fukaya categories, correspondences The Lekili-Perutz approach: correspondences from cobordisms The Fukaya category of the symmetric product The Lipshitz-Ozsv´ ath-Thurston strands algebra Modules and bimodules from bordered 3-manifolds Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 4 / 13

  5. Heegaard-Floer homology Y 3 closed 3-manifold admits a Heegaard H β splitting into two handlebodies Y = H α ∪ ¯ Σ H β . This is encoded by a Heegaard diagram (¯ Σ , α 1 . . . α g , β 1 . . . β g ). ( g = genus (¯ Σ)) β 1 β g H α z ¯ Σ α 1 α g unordered g -tuples of points on punctured Σ Let T α = α 1 × · · · × α g , T β = β 1 × · · · × β g ⊂ Sym g (¯ Σ \ z ) Theorem ( Ozsv´ ath-Szab´ o, ∼ 2000) � HF ( Y ) := HF ( T β , T α ) is independent of chosen Heegaard diagram. (Floer homology: complex generated by T α ∩ T β = g -tuples of intersections between α and β curves, differential counts holomorphic curves). Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 5 / 13

  6. Floer homology and Fukaya categories Σ Riemann surface � M = Sym g (Σ) symplectic manifold (monotone) Products of disjoint loops/arcs (e.g. T α = α 1 × · · · × α g ) are Lagrangian. Floer homology = Lagrangian intersection theory, corrected by holomorphic discs to ensure deformation invariance. Floer complex CF ( L , L ′ ) = � x ∈ L ∩ L ′ Z 2 x (assuming L , L ′ transverse) differential ∂ : CF ( L , L ′ ) → CF ( L , L ′ ) L ′ y x coeff. of y in ∂ x counts holomorphic strips L HF ( L , L ′ ) = Ker ∂/ Im ∂ . (For product Lagrangians T α , T β ⊂ Sym g (Σ), intersections = tuples of α i ∩ β σ ( i ) ; holom. curves in Sym g (Σ) can be seen on Σ. So � HF = HF ( T β , T α ) fairly easy) Fukaya category F ( M ): objects = Lagrangian submanifolds ∗ (closed) (monotone, balanced) hom( L , L ′ ) = CF ( L , L ′ ) with differential ∂ y L ′′ L ′ composition CF ( L , L ′ ) ⊗ CF ( L ′ , L ′′ ) → CF ( L , L ′′ ) z x coeff. of z in x · y counts holom. triangles L more ( A ∞ -category) Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 6 / 13

  7. Lagrangian correspondences; the Lekili-Perutz TQFT L Lagrangian correspondences M 1 − → M 2 = Lagrangian submanifolds L ⊂ ( M 1 × M 2 , – ω 1 ⊕ ω 2 ). These generalize symplectomorphisms (but need not be single-valued); should map Lagrangians to Lagrangians. “Generalized Lagrangians” = formal images of Lagrangians under sequences of correspondences; Floer theory extends well. � extended Fukaya cat. F # ( M ) (Ma’u-Wehrheim-Woodward). L → M 2 induce functors F # ( M 1 ) → F # ( M 2 ). Correspondences M 1 − Heegaard-Floer TQFT Σ (punctured) surface � category C (Σ) = F # (Sym g (Σ)) Y 3 with boundary ∂ Y = Σ � object T Y : (generalized) Lagrangian submanifold of Sym g (Σ) (for a handlebody, T Y = product torus) cobordism ∂ Y = Σ 2 − Σ 1 � functor induced by (generalized) Lagr. correspondence T Y : Sym k 1 (Σ 1 ) − → Sym k 2 (Σ 2 ). Pairing theorem: � HF ( Y 1 ∪ Σ Y 2 ) ≃ HF ( T Y 1 , T − Y 2 ). Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 7 / 13

  8. Lekili-Perutz: correspondences from cobordisms Σ − = Σ 0 Perutz: Elementary cobordism Y 12 : Σ 1 � Σ 2 = ⇒ Lagrangian correspondence Y 01 T 12 ⊂ Sym k (Σ 1 ) × Sym k +1 (Σ 2 ) ( k ≥ 0) Σ 1 (roughly: k points on Σ 1 �→ “same” k points on Σ 2 Y 12 plus one point anywhere on γ ) Lekili-Perutz: decompose Y 3 into sequence of γ Σ 2 elementary cobordisms Y i , i +1 , compose all T i , i +1 to get a generalized correspondence T Y . . . . Y : Sym k − (Σ − ) → Sym k + (Σ + ) ( ∂ Y =Σ + − Σ − ) T Σ + Theorem (Lekili-Perutz) T Y is independent of decomposition of Y into elementary cobordisms. View Y 3 ( sutured: ∂ Y =Σ + ∪ Σ − ) as cobordism of surfaces w. boundary For a handlebody (as cobordism D 2 � Σ g ), T Y ≃ product torus Y 3 closed, Y \ B 3 : D 2 � D 2 , then T Y ≃ � HF ( Y ) ∈ F # ( pt ) = Vect Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 8 / 13

  9. Lekili-Perutz vs. bordered Heegaard-Floer The extended Fukaya category F # (Sym g (Σ)) and the generalized Lagrangians T Y (for Y 3 with ∂ Y = Σ) constructed by Lekili-Perutz are not very explicit at first glance... unlike Bordered Heegaard-Floer homology (Lipshitz-Ozsv´ ath-Thurston 2008) Σ (decorated) surface � (cat. of modules over) dg-algebra A (Σ , g ) Y 3 with ∂ Y = Σ � � CFA ( Y ) (right A ∞ ) module over A (Σ , g ) pairing: � HF ( Y 1 ∪ Σ Y 2 ) ≃ hom mod- A ( � Y 2 ) , � CFA ( − CFA ( Y 1 )) In fact, by considering specific product Lagrangians in Sym g (Σ) one gets: Theorem F # (Sym g (Σ)) embeds fully faithfully into mod- A (Σ , g ) Given Y 3 with ∂ Y = Σ , the embedding maps T Y to � CFA ( Y ) Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 9 / 13

  10. The Lipshitz-Ozsv´ ath-Thurston strands algebra A (Σ , g ) Describe Σ by a pointed matched circle: segment with 4 g points carrying labels 1 , . . . , 2 g , 1 , . . . , 2 g (= how to build Σ = D 2 ∪ 2 g 1-handles) A (Σ , g ) is generated (over Z 2 ) by g -tuples of { upward strands, pairs of horizontal dotted lines } s.t. the g source labels (resp. target labels) in { 1 , . . . , 2 g } are all distinct. Example ( g = 2) 4 4 4 4 4 4 4 4 4 4 q q q q q q q q q q 3 3 3 3 3 3 3 3 3 3 q q q q q q q q q q 2 2 2 2 2 2 2 2 2 2 ∂ q q q q q q q q q q �→ �→ 1 1 1 1 1 1 1 1 1 1 q q q q q q q q q q 4 4 4 4 4 4 4 4 4 4 q q q q q q q q q q 3 3 3 3 3 3 3 3 3 3 q q q q q q q q q q 2 2 2 2 2 2 2 2 2 2 q q q q q q q q q q 1 1 1 1 1 1 1 1 1 1 q q q q q q q q q q { 1 , 2 } �→ { 2 , 4 } Differential: sum all ways of smoothing one crossing. Product: concatenation (end points must match). q as q q + q q Treat q and set q = 0. q q q q q q q q q Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 10 / 13

  11. The extended Fukaya category vs. A (Σ , g ) Theorem F # (Sym g (Σ)) embeds fully faithfully into mod- A (Σ , g ) (A ∞ -modules) Main tool: partially wrapped Fukaya cat. F # (Sym g (Σ) , z ) ( z ∈ ∂ Σ) Enlarge F # : add noncompact objects = products of disjoint properly embedded arcs. Roughly, hom( L 0 , L 1 ) := CF (˜ L 0 , ˜ L 1 ), deforming all arcs so that end points of ˜ L 0 lie above those of ˜ L 1 (without crossing z ). Similarly, product is defined by perturbing so that ˜ L 0 > ˜ L 1 > ˜ L 2 . (after Abouzaid-Seidel) Let D s = � z α i ( s ⊆ { 1 ... 2 g } , | s | = g ). Then: α 2 g i ∈ s 1. � α 1 hom( D s , D t ) ≃ A (Σ , g ) s , t 2. the objects D s generate F # (Sym g (Σ) , z ) Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 11 / 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend