the spin dependent quark beam function at nnlo
play

The spin-dependent quark beam function at NNLO Ulrich Schubert - PowerPoint PPT Presentation

The spin-dependent quark beam function at NNLO Ulrich Schubert Argonne National Laboratory In collaboration with R. Boughezal, F. Petriello and H. Xing arXiv:1704.05457 Proton Spin Puzzle Proton spin sum rule 2 = 1 1 2 + G + L


  1. The spin-dependent quark beam function at NNLO Ulrich Schubert Argonne National Laboratory In collaboration with R. Boughezal, F. Petriello and H. Xing arXiv:1704.05457

  2. Proton Spin Puzzle • Proton spin sum rule 2 = 1 1 2 ∆Σ + ∆ G + L q + L g Z 1 Z 1 X ∆Σ = dx ∆ f q i ( x ) ∆ G = dx ∆ f g ( x ) 0 0 i • Contribution from quarks much smaller then expected ∆Σ ≈ 0 . 25 • Helicity parton distributions are probed by DIS$ SIDIS$ pp$(RHIC)$

  3. Current Status • Current data is not well described 0.4 LO E155 Θ =2.75 ° Θ NLO E155-DATA; 0.3 0.2 A LL 0.1 θ 0 σ -0.1 -0.2 30 21 22 23 24 25 26 27 28 29 30 P h [GeV] [Ringer, Vogelsang] [Hinderer, Schlegel, Vogelsang] • We need more data and more accurate theoretical predictions => Extent techniques from unpolarized collision

  4. N-Jettiness [Boughezal, Focke, Liu, Petriello; Gaunt Stahlhofen Tackmann, Walsh] virtual real virtual real-real

  5. N-Jettiness [Boughezal, Focke, Liu, Petriello; Gaunt Stahlhofen Tackmann, Walsh] Θ ( τ cut − τ ) τ cut Θ ( τ − τ cut )

  6. N-Jettiness [Boughezal, Focke, Liu, Petriello; Gaunt Stahlhofen Tackmann, Walsh] Θ ( τ cut − τ ) τ cut Θ ( τ − τ cut ) => Use factorisation theorem => NLO N+1 jet calculation derived from SCET � N � d σ � = H ⊗ B ⊗ S ⊗ + J n Power corrections d T N n [Stewart, Tackmann, Waalewijn] Hard function (H): virtual corrections, process dependent Soft function (S): describes soft radiation Jet function (J): describes radiation collinear to final state jets Beam function (B): describes collinear initial state radiation

  7. Polarized Collisions • Above cut piece can simply be polarised • Similar factorization theorem for the below cut piece � N � d σ LL � = ∆ H ⊗ ∆ B ⊗ S ⊗ + · · · J n d T N n Soft function: unchanged from unpolarized version [Boughezal, Liu, Petriello] Jet function: unchanged from unpolarized version [Becher, Neubert; Becher, Bell] Hard function: known for DIS and DY ∆ H = H + − H − Beam function: previously unknown, discussed here ∆ B = B + − B −

  8. Beam function [Stewart, Tackmann, Waalewijn] Z 1 ✓ ◆ d ξ t, x X ∆ B i ( t, x, µ ) = ∆ f j ( ξ , µ ) ξ ∆ I ij ξ x j • Parton j with momentum distribution determined by PDF emits collinear radiation, which builds up jet described by I ij • These emissions might change the parton i entering the hard scattering (type, momentum fraction) • can be calculated perturbatively I ij

  9. Outline of Calculation Generate squared amplitude • ∆ B bare ( t, z ) = + . . . ij

  10. Outline of Calculation Generate squared amplitude • ∆ B bare ( t, z ) = + . . . ij • Reverse Unitarity [Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello] Integration-by-parts(IBP) • n [Chetyrkin,Tkachov] X ∆ B bare ( t, z ) = c i ( t, z ) I i ( t, z ) ij i =1

  11. Outline of Calculation Generate squared amplitude • ∆ B bare ( t, z ) = + . . . ij • Reverse Unitarity [Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello] Integration-by-parts(IBP) • n [Chetyrkin,Tkachov] X ∆ B bare ( t, z ) = c i ( t, z ) I i ( t, z ) ij Differential Equations(DEQ) i =1 • [Kotikov;Gehrmann,Remiddi]

  12. Outline of Calculation Generate squared amplitude • ∆ B bare ( t, z ) = + . . . ij • Reverse Unitarity [Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello] Integration-by-parts(IBP) • n [Chetyrkin,Tkachov] X ∆ B bare ( t, z ) = c i ( t, z ) I i ( t, z ) ij Differential Equations(DEQ) i =1 • [Kotikov;Gehrmann,Remiddi] � • UV renormalization ∆ B bare dt ′ Z i ( t − t ′ , µ ) ∆ B ij ( t ′ , z, µ ) , ( t, z ) = ij

  13. Outline of Calculation Generate squared amplitude • ∆ B bare ( t, z ) = + . . . ij • Reverse Unitarity [Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello] Integration-by-parts(IBP) • n [Chetyrkin,Tkachov] X ∆ B bare ( t, z ) = c i ( t, z ) I i ( t, z ) ij Differential Equations(DEQ) i =1 • [Kotikov;Gehrmann,Remiddi] � • UV renormalization ∆ B bare dt ′ Z i ( t − t ′ , µ ) ∆ B ij ( t ′ , z, µ ) , ( t, z ) = ij • Matching on PDF � ∆ B ij ( t, z, µ ) = ∆ I ik ( t, z, µ ) ⊗ ∆ f kj ( z ) k

  14. Outline of Calculation Generate squared amplitude • ∆ B bare ( t, z ) = + . . . ij • Reverse Unitarity [Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello] Integration-by-parts(IBP) • n [Chetyrkin,Tkachov] X ∆ B bare ( t, z ) = c i ( t, z ) I i ( t, z ) ij Differential Equations(DEQ) i =1 • [Kotikov;Gehrmann,Remiddi] � • UV renormalization ∆ B bare dt ′ Z i ( t − t ′ , µ ) ∆ B ij ( t ′ , z, µ ) , ( t, z ) = ij • Matching on PDF � ∆ B ij ( t, z, µ ) = ∆ I ik ( t, z, µ ) ⊗ ∆ f kj ( z ) k ⇣ Z 5 ⌘ ⇣ ⌘ Z 5 ⊗ ∆ ˜ ∆ ˜ I ⊗ ¯ • Additional renormalization for γ 5 ∆ B = f ⊗

  15. Master Integrals • Initially integrals O (100) − O (1000) • 9 MIs in real-real channel • 3 MIs in real-virtual channel • Generate DEQ @ x ~ f = A x ~ f , x = t, z

  16. Calculation of Master Integrals • Bring DEQ in canonical form with Magnus algorithm [Henn; Argeri, Di Vita, Mastrolia, Mirabella, Schlenk, Tancredi, U.S.] ˆ ˆ ˆ A 1 A 2 A 3 g = ✏ ˆ ˆ @ x ~ A x ~ g A z = z + 1 + z + 1 − z • Matrices have only numeric entries A i • Simple alphabet { 1 − z, z, 1 + z } • Solution can be written in terms of Harmonic Polylogarithms Z z dtH a 2 ,...a n ( t ) H a 1 ,...,a n ( z ) = a i ∈ 0 , − 1 , 1 , t − a 1 0 H 0 ,..., 0 ( z ) = 1 n ! log n ( z )

  17. Calculation of Master Integrals (1 − z ) − 2 ✏ F ( z ) • MI for RR channel behave like when z → 1 [Gaunt, Stahlhofen, Tackmann] => fixes 7 out of 9 boundary constants • One MI is easily obtained by direct integration • Last boundary constant obtained by • Introduce extra scale • Solve DEQ with extra scale • Here all boundaries can be fixed easily • take scale carefully to zero (1 − z ) − 2 ✏ , − ✏ F ( z ) • MI for RV behave like when z → 1 => fixes one boundary constant • Taking carefully fixes second boundary constant z → 0 • Last boundary can be easily obtained by direct integration

  18. UV renormalisation and Matching • Use standard renormalization e MS � ∆ B bare (2) ( t, z ) = ∆ B (2) ij ( t, z, µ ) + Z (2) dt ′ Z (1) ( t − t ′ , µ ) ∆ B (1) ij ( t ′ , z, µ ) . ( t, µ ) δ ij δ (1 − z ) + ij i i ∆ B (1) O ( ✏ 2 ) • Requires calculation of up to ij ( t, z, µ ) • Match beam function on PDFs I (2) ij ( t, z, µ ) = ∆ B (2) f (2) I (1) f (1) ∆ ˜ ij ( t, z, µ ) − 4 δ ( t ) ∆ ˜ � ∆ ˜ ik ( t, z, µ ) ⊗ ∆ ˜ ij ( z ) − 2 kj ( z ) . k ij ( z ) = − 1 f (1) P (0) ∆ ˜ � ∆ ˜ ij ( z ) , ij ( z ) = 1 ij ( z ) − 1 kj ( z ) + β 0 f (2) P (0) P (0) P (0) P (1) ∆ ˜ � ∆ ˜ ik ( z ) ⊗ ∆ ˜ 4 � 2 ∆ ˜ 2 � ∆ ˜ ij ( z ) , 2 � 2 k • Cancellation of poles provides consistency check

  19. Treatment of Gamma5 • We use HVBM scheme � 5 ≡ i { γ 5 , ˜ γ µ } = 0 , [ γ 5 , ˆ γ µ ] = 0 . 4! ✏ µ νρσ � µ � ν � σ � ρ • Result of Dirac traces depends on d- and 4-d-dimensional momenta • Map 4-d momenta to auxiliary vectors k 2 ] = − 2 � I d [ˆ k 1 · ˆ I d [( k 1 · v ⊥ )( k 2 · v ⊥ ))] , v 2 ⊥ • But: HVBM breaks helicity conservation Z 5 => Must be restored with additional renormalization ⇣ Z 5 ⌘ ⇣ ⌘ Z 5 ⊗ ˜ ∆ ˜ I ⊗ ¯ ∆ B = f ⊗ • can be obtained by demanding helicity conservation Z 5 ∆ I (2 ,V ) = I (2 ,V ) ∆ I (2 ,V ) = − I (2 ,V ) qq qq q ¯ q ¯ q q

  20. Consistency checks • HVBM scheme implemented in public code Tracer and in-house Form routine [Jamin,Lautenbacher] • MIs calculated by DEQ and direct integration • Cancellation of poles during renormalization and matching • Confirmed polarised LO and NLO splitting functions [Vogelsang] • Confirmed UV renormalisation constant [Stewart, Tackmann, Waalewijn; Ritzmann, Waalewijn] • Confirmed unpolarised quark beam function calculation at NLO and NNLO [Stewart, Tackmann, Waalewijn; Gaunt, Stahlhofen, Tackmann] Z 5 • consistent with Literature [Ravindran, Smith, van Neerven]

  21. Conclusions & Outlook • Calculated spin-dependent quark beam function • Last missing ingredient to apply N-jettiness subtraction to many polarized processes • Provided independent check on: - unpolarized quark beam function up to NNLO - polarised splitting function up to NLO • Ready for phenomenological studies

  22. Conclusions & Outlook • Calculated spin-dependent quark beam function • Last missing ingredient to apply N-jettiness subtraction to many polarized processes • Provided independent check on: - unpolarized quark beam function up to NNLO - polarised splitting function up to NLO • Ready for phenomenological studies Thank you for your attention

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend