the singular perturbation phenomenon and the turnpike
play

The singular perturbation phenomenon and the turnpike property in - PowerPoint PPT Presentation

The singular perturbation phenomenon and the turnpike property in optimal control Boris WEMBE, Boris.Wembe@irit.fr (Phd student), Supervisors: O. Cots & J. Gergaud 17-20 September 2019, Nice. 19th French-German-Swiss Optimization Conference,


  1. The singular perturbation phenomenon and the turnpike property in optimal control Boris WEMBE, Boris.Wembe@irit.fr (Phd student), Supervisors: O. Cots & J. Gergaud 17-20 September 2019, Nice. 19th French-German-Swiss Optimization Conference, 1 / 25

  2. Singular perturbation: what is it ? � x ( t ) ˙ = x ( t ) , x ( 0 ) = x 0 ε ˙ y ( t ) = x ( t ) − y ( t ) , y ( 0 ) = y 0 2 / 25

  3. Singularly perturbed optimal control problems ◮ Problem of interest: � 1  0 f 0 ( x ( t ) , y ( t ) , u ( t )) dt min    ( P ε ) x ( t ) ∈ R n , x ( t ) = f ( x ( t ) , y ( t ) , u ( t )) , ˙ x ( 0 ) , x ( 1 ) given   y ( t ) ∈ R m , ε ˙ y ( t ) = g ( x ( t ) , y ( t ) , u ( t )) , y ( 0 ) , y ( 1 ) given  where x , y are resp. slow and fast variables since ε > 0 is supposed to be small and where u ( t ) ∈ R k . ◮ Setting ε = 0 , we define the zero order reduced problem : � 1  0 f 0 ( x ( t ) , y ( t ) , u ( t )) dt min    ˙ ( P 0 ) x ( t ) = f ( x ( t ) , y ( t ) , u ( t )) , x ( 0 ) = x ( 0 ) , x ( 1 ) = x ( 1 ) ,   0 = g ( x ( t ) , y ( t ) , u ( t )) .  ◮ Roughly speaking and under suitable assumptions the main result is: x ε ( t ) → x ( t ) on [ 0 , 1 ] and y ε ( t ) → y ( t ) on every [ a , b ] ⊂ ( 0 , 1 ) , when ε → 0 . 3 / 25

  4. Contents of the talk ◮ We’ll first introduce the turnpike framework and show the link with singularly perturbed control problems ; ◮ Then we’ll combine the ideas developed in both approaches (turnpike property: see Trélat and Zuazua [7] and singular perturbation theory: see Khalil [4]) and propose a path following approach to provide a more efficient numerical resolution method ; ◮ Finally we’ll extend our methotology to singular optimal control problems with slow variables and give some convergence results . 4 / 25

  5. Turnpike framework ◮ Let consider the optimal control problem � T  min 0 f 0 ( y ( t ) , u ( t )) dt , T > 0 large enough    y ( t ) ∈ R m , u ( t ) ∈ R k , ( OCP T ) y ( t ) = f ( y ( t ) , u ( t )) , ˙   y ( 0 ) = y 0 , y ( T ) = y f .  ◮ The associated reduced problem (or static optimal control problem) is ( y , u ) ∈ R m × R k f 0 ( y , u ) ( SOCP T ) min s.t. f ( y , u ) = 0 . Turnpike property (Trélat and Zuazua [7]): under suitable assumptions, the optimal solution ( y T ( · ) , u T ( · )) of ( OCP ) T remains most of the time close to the static solution ( y , u ) , i.e there exists positive constants C 1 , C 2 such that � e − C 2 t + e − C 2 ( T − t ) � � y T ( t ) − y � + � u T ( t ) − u � ≤ C 1 (1) for every t ∈ [ 0 , T ] . 5 / 25

  6. Example 1 � T  ( y 1 ( t ) − 1 ) 2 + ( y 2 ( t ) − 1 ) 2 + ( u ( t ) − 2 ) 2 � min 1 � dt , T = 20 ,  2 0    y 1 ( t ) = y 2 ( t ) , ˙ ( y 1 ( 0 ) , y 1 ( T )) = ( 1 , 3 )   y 2 ( t ) = 1 − y 1 ( t ) + y 3  ˙ 2 ( t ) + u ( t ) , ( y 2 ( 0 ) , y 2 ( T )) = ( 1 , 0 )  3 2 2.5 1.5 y 1 (t) u(t) 2 1 1.5 0.5 1 0 0 0.5 1 0 0.5 1 t t 1 1 0.5 0.5 y 2 (t) y 2 (t) 0 0 -0.5 -0.5 -1 -1 0 0.5 1 1 2 3 t y 1 (t) Figure: (Blue) Static solution: ( y 1 , y 2 , u ) = ( 2 , 0 , 1 ) . 6 / 25

  7. Example 1 � T  ( y 1 ( t ) − 1 ) 2 + ( y 2 ( t ) − 1 ) 2 + ( u ( t ) − 2 ) 2 � min 1 � dt , T = 20 ,  2 0    y 1 ( t ) = y 2 ( t ) , ˙ ( y 1 ( 0 ) , y 1 ( T )) = ( 1 , 3 )   y 2 ( t ) = 1 − y 1 ( t ) + y 3  ˙ 2 ( t ) + u ( t ) , ( y 2 ( 0 ) , y 2 ( T )) = ( 1 , 0 )  3 2 2.5 0 y 1 (t) u(t) 2 -2 1.5 1 -4 0 0.5 1 0 0.5 1 t t 1 1 0.5 0.5 y 2 (t) y 2 (t) 0 0 -0.5 -0.5 0 0.5 1 1 2 3 t y 1 (t) Figure: (Blue) Static solution: ( y 1 , y 2 , u ) = ( 2 , 0 , 1 ) . (Red) Optimal solution compute by HamPath code. 6 / 25

  8. Singular perturbation viewpoint ◮ Taking s = ε t with ε = 1 / T , ( OCP ) T becomes � 1  0 f 0 ( y ( s ) , u ( s )) ds , min T    ( OCP ε ) y ( s ) ∈ R m , u ( s ) ∈ R k , ε ˙ y ( s ) = f ( y ( s ) , u ( s )) ,   y ( 0 ) = y 0 , y ( 1 ) = y f .  ◮ Thus: Turnpike control problems ⇔ singular perturbation control problems with only fast variables. ◮ Setting ε = 0, the zero order reduced system is the static problem: ( y , u ) ∈ R m × R k f 0 ( y , u ) min s.t. f ( y , u ) = 0 . The KKT conditions of the static problem are given by the reduced (putting ε = 0) necessary optimality conditions of ( OCP ε ) given by the Pontryagin Maximum Principle: ε ˙ y = ∇ q H ( y , q , u ) , ε ˙ q = −∇ y H ( y , q , u ) , 0 = ∇ u H ( y , q , u ) , where H ( y , q , u ) = − f 0 ( y , u ) + � q , f ( y , u ) � is the pseudo-Hamiltonian. 7 / 25

  9. Methodology ◮ Goal: Solve ( OCP ε ) for ε small . 8 / 25

  10. Methodology ◮ Goal: Solve ( OCP ε ) for ε small . ◮ Difficulty 1: Choice of the initial guess . 8 / 25

  11. Methodology ◮ Goal: Solve ( OCP ε ) for ε small . ◮ Difficulty 1: Choice of the initial guess . ◮ Difficulty 2: The singular perturbation introduces stiffness that makes the numerical integration difficult. 8 / 25

  12. Methodology ◮ Goal: Solve ( OCP ε ) for ε small . ◮ Difficulty 1: Choice of the initial guess . ◮ Difficulty 2: The singular perturbation introduces stiffness that makes the numerical integration difficult. ◮ Methodology: ◮ Step 1: Resolution of the KKT conditions of the static problem; ◮ Step 2: Continuation on the boundary conditions for sufficiently large ε ; ◮ Step 3: Continuation on ε . 8 / 25

  13. Step 2: Continuation on the boundary conditions We define the shooting homotopic function by S : R m × R R m → ( q 0 , λ ) �→ S ( q 0 , λ ) = y ( 1 , q 0 ) − ( λ y f + ( 1 − λ ) y ) λ ( q 0 , λ = 1 ) • with ε fixed and where ( y ( · , q 0 ) , q ( · , q 0 )) is solution of S ( q 0 , λ ) = 0 ε ˙ y ( t ) = f ( y ( t ) , u ( y ( t ) , q ( t ))) • ε ˙ q ( t ) = −∇ y H ( y ( t ) , q ( t ) , u ( y ( t ) , q ( t ))) y ( 0 ) = y 0 q ( 0 ) = q 0 • q 0 ( q 0 , λ = 0 ) The control in feedback form u ( y , q ) is as- sumed to be given by the PMP. Figure: HamPath computes the path of zeros of the homotopy S ( q 0 , λ ) = 0 9 / 25

  14. Example 1 - Step 1: KKT conditions of the static problem For λ = 0, the solution is the static solution: State solution Co-state solution Control 3 0 2 y 1 (t) q 1 (t) u(t) 2 -1 1 1 -2 0 0 0.5 1 0 0.5 1 0 0.5 1 t t t trajectory 1 0 1 y 2 (t) q 2 (t) y 2 (t) 0 -1 0 -1 -2 -1 0 0.5 1 0 0.5 1 1 2 3 t t y 1 (t) Figure: Graphs of state, co-state, control and trajectory in the plan and initial and final state taking as: ( y 1 , y 2 ) , ( y 1 , y 2 ) 10 / 25

  15. Example 1 - Step 2: Continuation on the boundary cond. For the second step i.e making homotopy on initial and final conditions we obtain, during the evolution of λ , the different trajectories: 3 2 2 2.5 1 0 y 1 (t) q 1 (t) u(t) 2 0 -2 1.5 -1 1 -2 -4 0 0.5 1 0 0.5 1 0 0.5 1 t t t 1 0 1 0.5 -2 0.5 y 2 (t) q 2 (t) y 2 (t) 0 -4 0 -0.5 -6 -0.5 0 0.5 1 0 0.5 1 1 2 3 t t y 1 (t) Figure: Graphs of state, co-state, control and trajectory in the plan during the homotopy on λ for T=20 i.e ε = 0 . 05 fixed. 11 / 25

  16. Example 1 - Step 3: Continuation on ε = 1 / T For the third step i.e making homotopy on ε and we finally obtain for T = 70 the following solution with a good accuracy (less than 10 − 6 ): State solution Co-state solution Control 4 2 5 y 1 (t) q 1 (t) u(t) 2 0 0 0 -2 -5 0 0.5 1 0 0.5 1 0 0.5 1 t t t trajectory 2 0 5 y 2 (t) q 2 (t) y 2 (t) -2 0 0 -4 -2 -5 0 0.5 1 0 0.5 1 0 0.5 1 t t y 1 (t) Figure: Graphs of state, co-state, control and trajectory in the plan after the homotopy on ε (with ε f = 1 / 70), λ = 1 being fixed, 12 / 25

  17. Convergence of different algorithms Algorithms t f = 20 t f = 40 t f = 41 t f = 60 t f = 70 Simple shooting ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ Step 2 only ✓ ✓ ✓ ✓ ✓ Step 2 and 3 Table: We use HamPath for the numerical experimentations. Numerical integrations are done with the dopri5 function with relative and absolute local errors of 1.e-8 and 1.e-14. The signification of the symbols ares : ✓ : the algorithm converges without difficulty; ✓ : the algorithm converges but is very slow; ✓ : the algorithm converges but with warnings in numerical integration; ✗ : the algorithm diverges. 13 / 25

  18. Generalization to singularly perturbed optimal control problems 14 / 25

  19. Optimal control problem with singular perturbation ◮ Let consider now the general problem, recalling that u ( t ) ∈ R k : � 1  0 f 0 ( x ( t ) , y ( t ) , u ( t )) dt min    x ( t ) ∈ R n , ( P ε ) x ( t ) = f ( x ( t ) , y ( t ) , u ( t )) , ˙ x ( 0 ) , x ( 1 ) given   y ( t ) ∈ R m , ε ˙ y ( t ) = g ( x ( t ) , y ( t ) , u ( t )) , y ( 0 ) , y ( 1 ) given  ◮ Setting ε = 0 the zero order reduced problem given by: � 1  0 f 0 ( x ( t ) , y ( t ) , u ( t )) dt min    ˙ ( P 0 ) x ( t ) = f ( x ( t ) , y ( t ) , u ( t )) , x ( 0 ) = x ( 0 ) , x ( 1 ) = x ( 1 ) ,   0 = g ( x ( t ) , y ( t ) , u ( t )) .  remains an optimal control problem, but independent of ǫ . ◮ Remark: boundary conditions are still verified on the slow variables x i.e ( x ( 0 ) , ( x ( 1 )) = ( x ( 0 ) , x ( 1 )) but not on the fast variables y . 15 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend