rate optimal perturbation bounds for singular subspaces
play

Rate-Optimal Perturbation Bounds for Singular Subspaces with - PowerPoint PPT Presentation

Rate-Optimal Perturbation Bounds for Singular Subspaces with Applications to High-Dimensional Statistics Anru Zhang Department of Statistics University of Wisconsin Madison Introduction Introduction Focus: singular value decomposition


  1. Rate-Optimal Perturbation Bounds for Singular Subspaces with Applications to High-Dimensional Statistics Anru Zhang Department of Statistics University of Wisconsin – Madison

  2. Introduction Introduction • Focus: singular value decomposition (SVD) X = U · Σ 1 · V ⊤ + U ⊥ · Σ 2 · V ⊤ ⊥ • Due to perturbation, ˆ X = X + Z , SVD is altered to V ⊤ + ˆ U · ˆ U ⊥ · ˆ V ⊤ X = ˆ ˆ Σ 1 · ˆ Σ 2 · ˆ ⊥ . Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 2

  3. Introduction Introduction close ˆ V to V (or ˆ small perturbation + large signal → U and U ) • Problem: Perturbation Bounds on Singular Subspaces ◮ How to quantify the difference between ˆ V and V (or ˆ U and U )? ◮ Is there any upper bounds for the difference? ◮ Are U and ˆ U , V and ˆ V equally different? • Motivation : spectral method , which has been used in a wide range of modern high-dimensional statistical problems, utilize this property. Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 3

  4. Introduction Application 1: Low-rank Matrix Denoising ˆ X = X + Z , Z iid ∼ sub-Gaussian (0 , σ 2 ) X is approximately rank-r , • Target: X , U or V . • Specific applications ◮ Magnetic Resonance Imaging (MRI) (Cand` es, Sing-Long and Trzasko, 2012); ◮ Relaxometry (Bydder and Du, 2006) U , ˆ ˆ V , the first r singular vectors of ˆ • Natural estimators for U , V : X . • Q: How do ˆ U , ˆ V perform, respectively? Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 4

  5. Introduction Application 2: High-dimensional Clustering • Observe n points X 1 , . . . , X n ∈ R p , p ≥ n . • Each point belongs to one of two classes (Jin, Ke and Wang, 2015) iid X i = µ l i + ε i ∈ R p , ∼ sub-Gaussian (0 , σ 2 I p ) , i = 1 , . . . , n , ε i µ ∈ R p is the mean . l i ∈ {− 1 , 1 } are labels ; • Goal: recover labels l . Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 5

  6. Introduction Other Applications • In addition, spectral method is often applied to find a “warm start” for more delicate iterative algorithms. ◮ phase retrieval (Cai, Li and Ma, 2016) ◮ matrix completion (Sun and Luo, 2015) ◮ community detection (Jin, 2015) Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 6

  7. Introduction Other Applications Other applications of spectral methods include • community detection • matrix completion • principle component analysis • canonical correlation analysis • ... Specific practices include • collaborative filtering (the Netflix problem) • multi-task learning • system identification • sensor localization • ... Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 7

  8. Perturbation Bounds for Singular Subspaces Problem Formulation X = U · Σ 1 · V ⊤ + U ⊥ · Σ 2 · V ⊤ ⊥ V ⊤ + ˆ U · ˆ U ⊥ · ˆ V ⊤ ˆ X = ˆ ˆ Σ 1 · ˆ Σ 2 · ˆ X = X + Z , ⊥ • Target: Measure the difference between ˆ V and V ( ˆ U and U ) Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 8

  9. Perturbation Bounds for Singular Subspaces sin Θ Distance of Singular Sub-spaces Definition of sin Θ distances : • Suppose V ⊤ ˆ V have singular values σ 1 ≥ σ 2 ≥ · · · ≥ σ r ≥ 0 . • Define the sine principle angles as � � sin Θ ( V , ˆ 1 − σ 2 1 − σ 2 V ) = diag ( r ) . 1 , . . . , • Quantitative measure of distance: � sin Θ ( ˆ V , V ) � and � sin Θ ( ˆ V , V ) � F . Good properties : • Triangular inequality → indeed a distance; • Many other distances are equivalent → convenient to use. Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 9

  10. Perturbation Bounds for Singular Subspaces Classic Results of Perturbation Bounds • The Perturbation bounds: develop the upper bound for � sin Θ ( V , ˆ � sin Θ ( U , ˆ � sin Θ ( V , ˆ � sin Θ ( U , ˆ V ) � , U ) � , V ) � F , U ) � F . • This problem has been widely studied in the literature (Davis and Kahan, 1970; Wedin, 1972; Weyl, 1912; Stewart, 1991, 2006; Yu et al., 2015; Fan, Wang and Zhong, 2016). • Classical tools: ◮ Davis and Kahan (1970): eigenvectors of symmetric matrices; ◮ Wedin (1972): singular vectors for asymmetric matrices. Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 10

  11. Perturbation Bounds for Singular Subspaces Classic Result: Wedin’s sin Θ Theorem X = U · Σ 1 · V ⊤ + U ⊥ · Σ 2 · V ⊤ ⊥ V ⊤ + ˆ X = ˆ ˆ U · ˆ Σ 1 · ˆ U ⊥ · ˆ Σ 2 · ˆ V ⊤ ⊥ Wedin’s sin Θ Theorem (1972) states that if σ min (ˆ Σ 1 ) − σ max ( Σ 2 ) = δ > 0 , � � � Z ˆ V � , � ˆ U ⊤ Z � max � � � sin Θ ( V , ˆ V ) � , � sin Θ ( U , ˆ U ) � ≤ max . δ • joint upper bound for both ˆ U and ˆ V ; • may be sub-optimal. Figure: Intuitively, estimating V is more difficult than U for the matrix above. Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 11

  12. Perturbation Bounds for Singular Subspaces Unilateral Perturbation Bound • Decompose � � V ⊤ � � Z 11 � Z 12 � Z = U U ⊥ . V ⊤ Z 21 Z 22 ⊥ Z 11 = U ⊤ ZV , Z 21 = U ⊥ ZV ⊤ , Z 12 = U ⊤ ZV ⊥ , Z 22 = U ⊥ ZV ⊥ . Define z ij : = � Z ij � for i , j = 1 , 2 . Theorem (Unilateral Perturbation Bound (Cai & Z. 2016)) Denote α : = σ min ( U ⊤ ˆ XV ⊥ ) . If α 2 > β 2 + z 2 ⊥ ˆ XV ) , β : = σ max ( U ⊤ 12 ∧ z 2 21 , then α z 12 + β z 21 � sin Θ ( V , ˆ V ) � ≤ ∧ 1 , α 2 − β 2 − z 2 21 ∧ z 2 12 α z 21 + β z 12 � sin Θ ( U , ˆ U ) � ≤ ∧ 1 . α 2 − β 2 − z 2 21 ∧ z 2 12 Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 12

  13. Perturbation Bounds for Singular Subspaces Remark • Since α > β , α z 12 + β z 21 α z 21 + β z 12 if z 12 > z 21 , > , α 2 − β 2 − z 2 α 2 − β 2 − z 2 21 ∧ z 2 21 ∧ z 2 12 12 vice versa. • When α ≫ max( β, � Z � ) , the upper bound is approximately V ) � ≤ z 12 U ) � ≤ z 21 � sin Θ ( V , ˆ � sin Θ ( U , ˆ α , α . In contrast, Wedin’s sin Θ law only leads to V ) � ≤ � Z � U ) � ≤ � Z � � sin Θ ( V , ˆ � sin Θ ( U , ˆ α , α . • The upper bound in Frobenius norm sin Θ norm can be derived similarly. Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 13

  14. Perturbation Bounds for Singular Subspaces Idea Behind � I r � � I r � . Let us take a look at ˆ Assume U = , V = X . 0 0 • When estimating U , z 12 becomes “signal” while z 21 becomes “noise.” • When estimating V , z 12 becomes “noise” while z 21 becomes “signal.” Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 14

  15. Perturbation Bounds for Singular Subspaces Lower Bound Theorem (Perturbation Lower Bound) Define the class of p 1 × p 2 rank- r matrices and perturbations, � F r ,α,β, z 21 , z 12 = ( X , Z ) : rank ( X ) = r , � σ min ( U ⊺ ˆ XV ) ≥ α, � Z 22 � ≤ β, � Z 12 � ≤ z 12 , � Z 21 � ≤ z 21 . Provided that α 2 > β 2 + z 2 21 , r < p 1 ∧ p 2 12 + z 2 , 2   1 α z 12 + β z 21 � � � sin Θ ( V , ˜ � ≥   inf sup V ) ∧ 1  , √   � �   α 2 − β 2 − z 2   12 ∧ z 2 ˜  2 10 V ( X , Z ) ∈F α,β, z 21 , z 12 21   1 α z 21 + β z 12 � � � sin Θ ( U , ˜   � ≥ inf sup U ) √ ∧ 1  . � �     α 2 − β 2 − z 2  12 ∧ z 2   ˜ 2 10 U ( X , Z ) ∈F α,β, z 21 , z 12 21 Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 15

  16. Applications Matrix Denoising Application: Matrix Denoising ˆ X = X + Z , Z iid X is rank-r , ∼ sub-Gaussian (0 , 1) • Target: U or V . • Natural estimators for U , V : ˆ U , ˆ V , the first r singular vectors of ˆ X . • Q: How do ˆ U , ˆ V perform, respectively? Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 16

  17. Applications Matrix Denoising • The r -th singular value of X , σ r ( X ) , is a good characterization for the difficulty of this problem. • Applying the perturbation bound, we obtain Theorem Suppose X = U · Σ · V ⊤ ∈ R p 1 × p 2 is of rank- r . Then � 2 ≤ C ( p 2 σ 2 r ( X ) + p 1 p 2 ) � � � sin Θ ( V , ˆ E V ) ∧ 1 , � � σ 4 r ( X ) � 2 ≤ C ( p 1 σ 2 r ( X ) + p 1 p 2 ) � � � sin Θ ( U , ˆ ∧ 1 . E U ) � � σ 4 r ( X ) Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 17

  18. Applications Matrix Denoising Define the following class of low-rank matrices F r , t = � X ∈ R p 1 × p 2 : rank ( X ) = r , σ r ( X ) ≥ t � . Theorem (Lower Bound) If r ≤ p 1 16 ∧ p 2 2 , then � p 2 t 2 + p 1 p 2 � V ) � 2 ≥ c E � sin Θ ( V , ˜ inf sup ∧ 1 , t 4 ˜ V X ∈F r , t � p 1 t 2 + p 1 p 2 � U ) � 2 ≥ c E � sin Θ ( U , ˜ inf sup ∧ 1 . t 4 ˜ V X ∈F r , t To sum up, � p 2 t 2 + p 1 p 2 � V ) � 2 ≍ E � sin Θ ( V , ˜ inf sup ∧ 1 , t 4 ˜ V X ∈F r , t � p 1 t 2 + p 1 p 2 � U ) � 2 ≍ E � sin Θ ( U , ˜ inf sup ∧ 1 . t 4 ˜ V X ∈F r , t Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend