on vector valued singular perturbation problems involving
play

On vector-valued singular perturbation problems involving potentials - PowerPoint PPT Presentation

On vector-valued singular perturbation problems involving potentials vanishing on curves Nelly Andr e and Itai Shafrir Univ. Tours, Technion Itai Shafrir mass constraint A phase transition problem (Cahn-Hilliard energy: Modica, Sternberg)


  1. On vector-valued singular perturbation problems involving potentials vanishing on curves Nelly Andr´ e and Itai Shafrir Univ. Tours, Technion Itai Shafrir mass constraint

  2. A phase transition problem (Cahn-Hilliard energy: Modica, Sternberg) Let W : R → [0 , ∞ ) be a smooth double-well potential: W ( t ) ≥ 0 , ∀ t , W ( t ) = 0 ⇐ ⇒ t ∈ { a 1 , a 2 } . Itai Shafrir mass constraint

  3. A phase transition problem (Cahn-Hilliard energy: Modica, Sternberg) Let W : R → [0 , ∞ ) be a smooth double-well potential: W ( t ) ≥ 0 , ∀ t , W ( t ) = 0 ⇐ ⇒ t ∈ { a 1 , a 2 } . W Itai Shafrir mass constraint

  4. A phase transition problem (Cahn-Hilliard energy: Modica, Sternberg) Let W : R → [0 , ∞ ) be a smooth double-well potential: W ( t ) ≥ 0 , ∀ t , W ( t ) = 0 ⇐ ⇒ t ∈ { a 1 , a 2 } . W For simplicity, take the potential W ( t ) = t 2 (1 − t ) 2 . Itai Shafrir mass constraint

  5. A phase transition problem (Cahn-Hilliard energy: Modica, Sternberg) Let W : R → [0 , ∞ ) be a smooth double-well potential: W ( t ) ≥ 0 , ∀ t , W ( t ) = 0 ⇐ ⇒ t ∈ { a 1 , a 2 } . W For simplicity, take the potential W ( t ) = t 2 (1 − t ) 2 . Let G ⊂ R N be a bounded domain with µ ( G ) = 1. Itai Shafrir mass constraint

  6. A phase transition problem (Cahn-Hilliard energy: Modica, Sternberg) Let W : R → [0 , ∞ ) be a smooth double-well potential: W ( t ) ≥ 0 , ∀ t , W ( t ) = 0 ⇐ ⇒ t ∈ { a 1 , a 2 } . W For simplicity, take the potential W ( t ) = t 2 (1 − t ) 2 . Let G ⊂ R N be a bounded domain with µ ( G ) = 1. Let c ∈ (0 , 1) be given. Itai Shafrir mass constraint

  7. A phase transition problem (Cahn-Hilliard energy: Modica, Sternberg) Let W : R → [0 , ∞ ) be a smooth double-well potential: W ( t ) ≥ 0 , ∀ t , W ( t ) = 0 ⇐ ⇒ t ∈ { a 1 , a 2 } . W For simplicity, take the potential W ( t ) = t 2 (1 − t ) 2 . Let G ⊂ R N be a bounded domain with µ ( G ) = 1. Let c ∈ (0 , 1) be given. For each ε > 0 let u ε be a minimizer for |∇ u | 2 + W ( u ) ˆ ˆ , u ∈ H 1 ( G ) , E ε ( u ) = u = c . ε 2 G G Itai Shafrir mass constraint

  8. Theorem (Modica, Sternberg 87) • u ε n → u 0 = χ G 1 in L 1 ( G ) with µ ( G 1 ) = c. Itai Shafrir mass constraint

  9. Theorem (Modica, Sternberg 87) • u ε n → u 0 = χ G 1 in L 1 ( G ) with µ ( G 1 ) = c. • The surface area of ∂ G 1 ∩ G is minimal, i.e., Per G G 1 = min { Per G A : A ⊂ G , | A | = c } . Itai Shafrir mass constraint

  10. Theorem (Modica, Sternberg 87) • u ε n → u 0 = χ G 1 in L 1 ( G ) with µ ( G 1 ) = c. • The surface area of ∂ G 1 ∩ G is minimal, i.e., Per G G 1 = min { Per G A : A ⊂ G , | A | = c } . • lim ε → 0 ε E ε ( u ε ) = 2 D Per G { u 0 = 1 } , where Itai Shafrir mass constraint

  11. Theorem (Modica, Sternberg 87) • u ε n → u 0 = χ G 1 in L 1 ( G ) with µ ( G 1 ) = c. • The surface area of ∂ G 1 ∩ G is minimal, i.e., Per G G 1 = min { Per G A : A ⊂ G , | A | = c } . • lim ε → 0 ε E ε ( u ε ) = 2 D Per G { u 0 = 1 } , where ˆ 1 � D := W ( s ) ds . 0 Itai Shafrir mass constraint

  12. Two scenarios Itai Shafrir mass constraint

  13. Two scenarios 1. G convex: G G 2 G 1 u ~0 u ~1 ε ε Itai Shafrir mass constraint

  14. Two scenarios 1. G convex: G G 2 G 1 u ~0 u ~1 ε ε 2. G non-convex: G G 2 G 1 u ~0 u ~1 ε ε Itai Shafrir mass constraint

  15. Two scenarios 1. G convex: G G 2 G 1 u ~0 u ~1 ε ε 2. G non-convex: G G 2 G 1 u ~0 u ~1 ε ε Or G G 2 G 1 u ~0 u ~1 ε ε Itai Shafrir mass constraint

  16. The isoperimetric profile The isoperimetric profile of G is the function I : (0 , µ ( G )) → R + : Itai Shafrir mass constraint

  17. The isoperimetric profile The isoperimetric profile of G is the function I : (0 , µ ( G )) → R + : I ( t ) = min { Per G V : V ⊂ G , µ ( V ) = t } . Itai Shafrir mass constraint

  18. The isoperimetric profile The isoperimetric profile of G is the function I : (0 , µ ( G )) → R + : I ( t ) = min { Per G V : V ⊂ G , µ ( V ) = t } . Clearly I is symmetric around µ ( G ) / 2. Itai Shafrir mass constraint

  19. The isoperimetric profile The isoperimetric profile of G is the function I : (0 , µ ( G )) → R + : I ( t ) = min { Per G V : V ⊂ G , µ ( V ) = t } . Clearly I is symmetric around µ ( G ) / 2. I(t) G convex , , | | t 0.5 1 0 β 1 β 2 Itai Shafrir mass constraint

  20. The isoperimetric profile The isoperimetric profile of G is the function I : (0 , µ ( G )) → R + : I ( t ) = min { Per G V : V ⊂ G , µ ( V ) = t } . Clearly I is symmetric around µ ( G ) / 2. I(t) G convex I(t) G nonconvex t , , | | | , , | | t 0.5 1 0.5 1 0 β 1 α β 2 0 β 1 β 2 Itai Shafrir mass constraint

  21. The isoperimetric profile The isoperimetric profile of G is the function I : (0 , µ ( G )) → R + : I ( t ) = min { Per G V : V ⊂ G , µ ( V ) = t } . Clearly I is symmetric around µ ( G ) / 2. I(t) G convex I(t) G nonconvex t , , | | | , , | | t 0.5 1 0.5 1 0 β 1 α β 2 0 β 1 β 2 Note: When G is convex, I ( t ) is concave. Itai Shafrir mass constraint

  22. The vector-valued problem Consider W : R 2 → [0 , ∞ ) vanishing on two closed curves Γ 1 , Γ 2 . Itai Shafrir mass constraint

  23. The vector-valued problem Consider W : R 2 → [0 , ∞ ) vanishing on two closed curves Γ 1 , Γ 2 . • 0 is inside Γ 1 which lies inside Γ 2 . Itai Shafrir mass constraint

  24. The vector-valued problem Consider W : R 2 → [0 , ∞ ) vanishing on two closed curves Γ 1 , Γ 2 . • 0 is inside Γ 1 which lies inside Γ 2 . • W nn > 0 on Γ 1 ∪ Γ 2 . Itai Shafrir mass constraint

  25. The vector-valued problem Consider W : R 2 → [0 , ∞ ) vanishing on two closed curves Γ 1 , Γ 2 . • 0 is inside Γ 1 which lies inside Γ 2 . • W nn > 0 on Γ 1 ∪ Γ 2 . • W satisfies a coercivity condition at infinity. Itai Shafrir mass constraint

  26. The vector-valued problem Consider W : R 2 → [0 , ∞ ) vanishing on two closed curves Γ 1 , Γ 2 . • 0 is inside Γ 1 which lies inside Γ 2 . • W nn > 0 on Γ 1 ∪ Γ 2 . • W satisfies a coercivity condition at infinity. Γ 2 M 1 Γ 1 . 0 M 2 m 1 R c m 2 . 0 m M R m M 1 1 c 2 r 2 Itai Shafrir mass constraint

  27. Our Problem: Let G ⊂ R N be a smooth bounded domain with µ ( G ) = 1. Itai Shafrir mass constraint

  28. Our Problem: Let G ⊂ R N be a smooth bounded domain with µ ( G ) = 1. Given R c ∈ ( M 1 , m 2 ), study the limit as ε → 0 of the minimizers { u ε } for ˆ |∇ u | 2 + W ( u ) ˆ : u ∈ H 1 ( G , R 2 ) , min { E ε ( u ) = | u | = R c } . ε 2 G G Itai Shafrir mass constraint

  29. Our Problem: Let G ⊂ R N be a smooth bounded domain with µ ( G ) = 1. Given R c ∈ ( M 1 , m 2 ), study the limit as ε → 0 of the minimizers { u ε } for ˆ |∇ u | 2 + W ( u ) ˆ : u ∈ H 1 ( G , R 2 ) , min { E ε ( u ) = | u | = R c } . ε 2 G G ´ We expect u ε n → u 0 with G | u 0 | = R c , Itai Shafrir mass constraint

  30. Our Problem: Let G ⊂ R N be a smooth bounded domain with µ ( G ) = 1. Given R c ∈ ( M 1 , m 2 ), study the limit as ε → 0 of the minimizers { u ε } for ˆ |∇ u | 2 + W ( u ) ˆ : u ∈ H 1 ( G , R 2 ) , min { E ε ( u ) = | u | = R c } . ε 2 G G ´ We expect u ε n → u 0 with G | u 0 | = R c , � u 0 ( x ) ∈ Γ 1 , x ∈ G 1 , u 0 ( x ) ∈ Γ 2 , x ∈ G 2 . Itai Shafrir mass constraint

  31. Our Problem: Let G ⊂ R N be a smooth bounded domain with µ ( G ) = 1. Given R c ∈ ( M 1 , m 2 ), study the limit as ε → 0 of the minimizers { u ε } for ˆ |∇ u | 2 + W ( u ) ˆ : u ∈ H 1 ( G , R 2 ) , min { E ε ( u ) = | u | = R c } . ε 2 G G ´ We expect u ε n → u 0 with G | u 0 | = R c , � u 0 ( x ) ∈ Γ 1 , x ∈ G 1 , u 0 ( x ) ∈ Γ 2 , x ∈ G 2 . . 0 m M R m c M 1 1 2 2 r Itai Shafrir mass constraint

  32. Our Problem: Let G ⊂ R N be a smooth bounded domain with µ ( G ) = 1. Given R c ∈ ( M 1 , m 2 ), study the limit as ε → 0 of the minimizers { u ε } for ˆ |∇ u | 2 + W ( u ) ˆ : u ∈ H 1 ( G , R 2 ) , min { E ε ( u ) = | u | = R c } . ε 2 G G ´ We expect u ε n → u 0 with G | u 0 | = R c , � u 0 ( x ) ∈ Γ 1 , x ∈ G 1 , u 0 ( x ) ∈ Γ 2 , x ∈ G 2 . . 0 m M R m c M 1 1 2 2 r Hence, µ ( G 1 ) ∈ [ β 1 , β 2 ] = I 0 := [ m 2 − R c m 2 − m 1 , M 2 − R c M 2 − M 1 ] . Itai Shafrir mass constraint

  33. Our Problem: Let G ⊂ R N be a smooth bounded domain with µ ( G ) = 1. Given R c ∈ ( M 1 , m 2 ), study the limit as ε → 0 of the minimizers { u ε } for ˆ |∇ u | 2 + W ( u ) ˆ : u ∈ H 1 ( G , R 2 ) , min { E ε ( u ) = | u | = R c } . ε 2 G G ´ We expect u ε n → u 0 with G | u 0 | = R c , � u 0 ( x ) ∈ Γ 1 , x ∈ G 1 , u 0 ( x ) ∈ Γ 2 , x ∈ G 2 . . 0 m M R m c M 1 1 2 2 r Hence, µ ( G 1 ) ∈ [ β 1 , β 2 ] = I 0 := [ m 2 − R c m 2 − m 1 , M 2 − R c M 2 − M 1 ] . µ ( G 1 ) := α satisfies I ( α ) = min t ∈I 0 I ( t ). Itai Shafrir mass constraint

  34. The results I. The “convex case” Itai Shafrir mass constraint

  35. The results I. The “convex case” I(t) G convex , , | | t 0 0.5 β 2 1 β 1 Theorem (Andr´ e-Sh 2011) If α ∈ { β 1 , β 2 } , Itai Shafrir mass constraint

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend