the role of turbulence and magnetic fields for star
play

The Role of Turbulence and Magnetic Fields for Star Formation - PowerPoint PPT Presentation

The Role of Turbulence and Magnetic Fields for Star Formation Christoph Federrath Cosmic Dust and Magnetism Daejeon 01 November 2018 Optical M51: The Whirlpool Galaxy Infrared Infrared: NASA, ESA, M. Regan & B. Whitmore (STScI),


  1. The Role of Turbulence and Magnetic Fields for Star Formation Christoph Federrath Cosmic Dust and Magnetism – Daejeon – 01 November 2018 Optical M51: The Whirlpool Galaxy Infrared Infrared: NASA, ESA, M. Regan & B. Whitmore (STScI), & R. Chandar (U. Toledo);Optical: NASA, ESA, S. Beckwith (STScI), & the Hubble Heritage Team (STScI/AURA)

  2. Star Formation is inefficient Federrath – Korea 2018

  3. Star Formation is Inefficient (Federrath 2015 MNRAS; 2018 Physics Today) Movies available: http://www.mso.anu.edu.au/~chfeder/pubs/ineff_sf/ineff_sf.html Gravity Turbulence only Turb+ Turb+ Mag+ Magnetic Jet/Outflow Fields Feedback Federrath – Korea 2018

  4. Turbulence Stars Feedback (Federrath & Klessen 2012; Federrath et al. 2017) Magnetic Fields Turbulence driven by Dynamics - Shear Solenoidal - Jets / Outflows (shear) - Cloud-cloud collisions - Winds / Ionization fronts - Spiral-arm compression Elmegreen & Scalo (2004) - Supernova explosions Compressive Mac Low & Klessen (2004) - Gravity / Accretion McKee & Ostriker (2007) Padoan et al. (2014) Carina Nebula, NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA), and NOAO/AURA/NSF Federrath – Korea 2018

  5. Turbulence driving – solenoidal versus compressive Ornstein-Uhlenbeck process (stochastic process with autocorrelation time) → forcing varies smoothly in space and time, following a well-defined random process Solenoidal forcing Compressive forcing Ñ× f = 0 Ñ x f = 0 Federrath – Korea 2018

  6. Turbulence driving – solenoidal versus compressive Movies available: http://www.mso.anu.edu.au/~chfeder/pubs/supersonic/supersonic.html Column Density solenoidal forcing compressive forcing D f ~ 2.6 D f ~ 2.3 (see Federrath et al. 2009; Roman-Duval et al. 2010; Donovan-Meyer et al. 2013) Compressive forcing produces stronger density enhancements (Federrath 2013, MNRAS 436, 1245: Supersonic turbulence @ 4096 3 grid cells) Federrath – Korea 2018

  7. The density PDF → Star Formation Density PDF log-normal: (Federrath et al. 2010) sol comp Vazquez-Semadeni (1994); Padoan et al. (1997); Ostriker et al. (2001); Hopkins (2013) b = 1/3 (sol) b = 1 (comp) Federrath et al. (2008, 2010); Price et al. (2011); Konstandin et al. (2012); Molina et al. (2012); Federrath & Banerjee (2015); Nolan et al. (2015) Federrath – Korea 2018

  8. The density PDF → Star Formation No star formation Active star formation Gas density n [par=cles/cm 3 ] Gas density n [par=cles/cm 3 ] A B A B Ac*ve star No star forma*on forma*on log PDF(s) log PDF(s) Large Small dense-gas dense - gas frac=on frac=on medium low medium low density density density density Log. density contrast s=ln(n/<n>) Log. density contrast s=ln(n/<n>) Kainulainen, Federrath, Henning (2014, Science ) 2D → 3D conversion (Brunt, Federrath, Price 2010a,b) Federrath – Korea 2018

  9. The Star Formation Rate Statistical Theory for the Star Formation Rate: freefall mass SFR ~ Mass/time time fraction s crit Hennebelle & Chabrier (2011) : “multi-freefall model” Federrath & Klessen (2012) Federrath – Korea 2018

  10. The Star Formation Rate Statistical Theory for the Star Formation Rate: freefall mass SFR ~ Mass/time time fraction Hennebelle & Chabrier (2011) : “multi-freefall model” Federrath & Klessen (2012) Federrath – Korea 2018

  11. The Star Formation Rate Statistical Theory for the Star Formation Rate: freefall mass SFR ~ Mass/time time fraction From sonic and Jeans scales: Hennebelle & Chabrier (2011) : “multi-freefall model” (Krumholz & McKee 2005, Padoan & Nordlund 2011) (e.g., Federrath et al. 2008) 2 E kin /E grav forcing Mach number Federrath & Klessen (2012) Federrath – Korea 2018

  12. Density PDF → Star Formation Rate 2 E kin /E grav forcing Mach number (solenoidal forcing) Federrath & Klessen (2012) Federrath – Korea 2018

  13. Density PDF → Star Formation Rate 2 E kin /E grav forcing Mach number (compressive forcing) Federrath & Klessen (2012) Federrath – Korea 2018

  14. Density PDF → Star Formation Rate Numerical experiment for Mach 10 and α vir ~ 1 Movies available: http://www.mso.anu.edu.au/~chfeder/pubs/sfr/sfr.html Solenoidal Driving (b=1/3) Compressive Driving (b=1) SFR ff (simulation) = 0.14 x 20 SFR ff (simulation) = 2.8 SFR ff (theory) = 0.15 x 15 SFR ff (theory) = 2.3 Theory and Simulation agree well. Federrath & Klessen (2012) Federrath – Korea 2018

  15. The Star Formation Rate – Magnetic fields Statistical Theory for the Star Formation Rate: freefall mass SFR ~ Mass/time time fraction MAGNETIC FIELD: (Padoan & Nordlund 2011; Molina et al. 2012) 2 E kin /E grav forcing Mach number plasma β=P th /P mag Federrath & Klessen (2012) Federrath – Korea 2018

  16. The Star Formation Rate – Magnetic fields Numerical experiment for Mach 10 and α vir ~ 1 Movies available: http://www.mso.anu.edu.au/~chfeder/pubs/sfr/sfr.html B =0 ( M A =∞, β = ∞) B =3μG ( M A =2.7, β = 0.2) SFR ff (simulation) = 0.46 x 0.63 SFR ff (simulation) = 0.29 SFR ff (theory) = 0.45 x 0.40 SFR ff (theory) = 0.18 Magnetic field reduces SFR and fragmentation (by factor 2) → IMF Federrath & Klessen (2012) Federrath – Korea 2018

  17. The Star Formation Rate – Magnetic fields Numerical experiment for Mach 10 and α vir ~ 1 Movies available: http://www.mso.anu.edu.au/~chfeder/pubs/sfr/sfr.html B =0 ( M A =∞, β = ∞) B =3μG ( M A =2.7, β = 0.2) SFR ff (simulation) = 0.46 x 0.63 SFR ff (simulation) = 0.29 SFR ff (theory) = 0.45 x 0.40 SFR ff (theory) = 0.18 Magnetic field reduces SFR and fragmentation (by factor 2) → IMF Federrath & Klessen (2012) Federrath – Korea 2018

  18. The role of magnetic field structure Serpens SMM1 Hull et al. (2017) Federrath – Korea 2018

  19. The role of magnetic field structure ALMA cores and dust polarization in Perseus Cox et al. (2018) Federrath – Korea 2018

  20. Jet/Outflow Feedback SO shows outflow in HH211-mms core in Perseus Lee et al. (2018) → ALMA to zoom in on details of accretion disk and outflow launching See also Zhang et al. (2018) Federrath – Korea 2018

  21. Jet Feedback in Binary Star Formation Movies available: https://www.mso.anu.edu.au/~chfeder/pubs/binary_jets/binary_jets.html Wide Binary Single Star Tight Binary Jet structure and power depend on binary separation → different star masses → Challenge for understanding the formation of solar mass stars Kuruwita et al. (2017) Federrath – Korea 2018

  22. Built-up of discs No Turbulence Low Turbulence Normal Turbulence Movies available: http://www.mso.anu.edu.au/~chfeder/pubs/binary_discs/binary_discs_xy.mp4 Turbulence makes bigger discs → relevant for planet formation Magnetic field structure is key for outflow/jet launching Kuruwita & Federrath (2018, submitted) Federrath – Korea 2018

  23. Implications for the stellar initial mass function (IMF) Efficiency ~ 1/3 1/3 Alves et al. (2007); Andre et al (2010) Outflow feedback reduces average star mass by factor ~ 3 → IMF! (Federrath et al. 2014) Federrath – Korea 2018

  24. The role of magnetic field structure Gerrard et al. (2018, submitted) Federrath – Korea 2018

  25. The role of magnetic field structure Density (g cm -3 ) 2x10 -17 2x10 -16 2x10 -15 2x10 -14 2x10 -13 2x10 -12 z (AU) 1 star 1 star 3 stars x (AU) Gerrard et al. (2018, submitted) See also Hodapp & Chini (2018) on dual jet/outflow components launched in Serpens South → Need ordered magnetic field component for jet launching (Blandford & Payne 1982) Federrath – Korea 2018

  26. The role of magnetic field structure → Key role of magnetic field structure for star mass and fragmentation Gerrard et al. (2018, submitted) Federrath – Korea 2018

  27. Turbulence ▪ Reynolds numbers > 1000 ▪ Kinetic energy cascade Leonardo da Vinci E(k) ~ k -5/3 ~ k -1.67 incompressible V ~ L 1/3 Mach < 1 Kolmogorov (1941) Federrath – Korea 2018

  28. Interstellar Turbulence – scaling BUT: Larson (1981) relation: E(k)~k -1.8–2.0 (see also Heyer & Brunt 2004; Roman-Duval et al. 2011) Observation Simulation (Larson 1981; Heyer & Brunt 2004) V ~ L 0.5 → E(k) ~ k -2 V [km/s] k 2 E(k) c s ~0.2 km/s L [pc] k Supersonic, compressible turbulence has steeper E(k)~k -1.9 than Kolmogorov (E~k -5/3 ) Federrath et al. (2010); see also Kritsuk et al. (2007) Federrath – Korea 2018

  29. Interstellar Turbulence ▪ Reynolds numbers > 1000 ▪ Kinetic energy cascade E(k) ~ k -2 E(k) ~ k -5/3 shock-dominated subsonic Mach > 1 Mach < 1 Kolmogorov (1941) Federrath – Korea 2018

  30. Interstellar Turbulence ▪ Reynolds numbers > 1000 ▪ Kinetic energy cascade E(k) ~ k -2 E(k) ~ k -5/3 protostars, discs molecular protostellar and planets clouds cores,filaments (AU scales) (100 pc) (0.1pc) Federrath – Korea 2018

  31. Towards resolving the sonic scale: Turbulence @ 10048 3 Federrath – Korea 2018

  32. Structure function è sonic scale (Federrath et al., submitted) Federrath – Korea 2018

  33. Structure function è sonic scale (Federrath et al., submitted) Federrath – Korea 2018

  34. Structure function è sonic scale (Federrath et al., submitted) Federrath – Korea 2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend