the remnant cp transformation
play

The remnant CP transformation Felix Gonzalez Canales Departamento - PowerPoint PPT Presentation

The remnant CP transformation Felix Gonzalez Canales Departamento de F sica CINVESTAV-IPN XXX Reuni on Anual DPyC-SMF Puebla, M exico May 24, 2016 F. Gonzalez-Canales (CINVESTAV) Remnant CP 1/18 May 24, 2016 1 / 18 Peng Chen,


  1. The remnant CP transformation Felix Gonzalez Canales Departamento de F´ ısica CINVESTAV-IPN XXX Reuni´ on Anual DPyC-SMF Puebla, M´ exico May 24, 2016 F. Gonzalez-Canales (CINVESTAV) Remnant CP 1/18 May 24, 2016 1 / 18

  2. Peng Chen, Gui-Jun Ding, FGC and J. W. F. Valle, Generalized µ − τ reflection symmetry and leptonic CP violation Phys. Lett. B 753 (2016) 644-652 arXiv:1512.01551 Peng Chen, Gui-Jun Ding, FGC and J. W. F. Valle, Classifying CP transformations according to their texture zeros: theory and implications arXiv:1604.03510 F. Gonzalez-Canales (CINVESTAV) Remnant CP 2/18 May 24, 2016 2 / 18

  3. Redefinition of lepton mixing matrix We adopt the charged lepton diagonal basis, m l ≡ diag ( m e , m µ , m τ ) . F. Gonzalez-Canales (CINVESTAV) Remnant CP 3/18 May 24, 2016 3 / 18

  4. Redefinition of lepton mixing matrix We adopt the charged lepton diagonal basis, m l ≡ diag ( m e , m µ , m τ ) . The neutrino mass matrix m ν can be expressed via the mixing matrix U as m ν = U ∗ diag ( m 1 , m 2 , m 3 ) U † under the assumption of Majorana neutrinos. F. Gonzalez-Canales (CINVESTAV) Remnant CP 3/18 May 24, 2016 3 / 18

  5. Redefinition of lepton mixing matrix We adopt the charged lepton diagonal basis, m l ≡ diag ( m e , m µ , m τ ) . The neutrino mass matrix m ν can be expressed via the mixing matrix U as m ν = U ∗ diag ( m 1 , m 2 , m 3 ) U † under the assumption of Majorana neutrinos. The invariance of the neutrino mass matrix under the action of a CP transformation ⇒ X T m ν X = m ∗ ν ⊤ ν L �→ i X γ 0 C ¯ ν , L X should be a symmetric unitary matrix to avoid degenerate neutrino masses. F. Gonzalez-Canales (CINVESTAV) Remnant CP 3/18 May 24, 2016 3 / 18

  6. Redefinition of lepton mixing matrix We adopt the charged lepton diagonal basis, m l ≡ diag ( m e , m µ , m τ ) . The neutrino mass matrix m ν can be expressed via the mixing matrix U as m ν = U ∗ diag ( m 1 , m 2 , m 3 ) U † under the assumption of Majorana neutrinos. The invariance of the neutrino mass matrix under the action of a CP transformation ⇒ X T m ν X = m ∗ ν ⊤ ν L �→ i X γ 0 C ¯ ν , L X should be a symmetric unitary matrix to avoid degenerate neutrino masses. The lepton mixing matrix U = Σ O 3 × 3 Q ν , Σ is the Takagi factorization matrix of X fulfilling X = ΣΣ T , � e − ik 1 π/ 2 , e − ik 2 π/ 2 , e − ik 3 π/ 2 � Q ν = diag , the entries of Q ν are ± 1 and ± i which encode the CP-parity or CP-signs of the neutrino states and it renders the light neutrino mass eigenvalues positive. F. Gonzalez-Canales (CINVESTAV) Remnant CP 3/18 May 24, 2016 3 / 18

  7. Redefinition of lepton mixing matrix The matrix O 3 × 3 = O 1 O 2 O 3 is a generic three dimensional real orthogonal matrix, and it can be parameterized as  1 0 0   cos θ 2 0 sin θ 2   , O 2 = O 1 = 0 cos θ 1 sin θ 1 0 1 0    0 − sin θ 1 cos θ 1 − sin θ 2 0 cos θ 2   cos θ 3 sin θ 3 0  . O 3 = − sin θ 3 cos θ 3 0  0 0 1 F. Gonzalez-Canales (CINVESTAV) Remnant CP 4/18 May 24, 2016 4 / 18

  8. The neutrino oscillation data Parameter 1 BFP ± 1 σ 2 σ range 3 σ range � 10 − 5 eV 2 � 7 . 60 +0 . 19 ∆ m 2 7 . 26 − 7 . 99 7 . 11 − 8 . 18 21 − 0 . 18 ∆ m 2 � 10 − 3 eV 2 � 2 . 48 +0 . 05 (NH) 2 . 35 − 2 . 59 2 . 30 − 2 . 65 31 − 0 . 07 � 10 − 3 eV 2 � ∆ m 2 2 . 38 +0 . 05 (IH) 2 . 26 − 2 . 48 2 . 20 − 2 . 54 13 − 0 . 06 sin 2 θ 12 / 10 − 1 3 . 23 ± 0 . 16 2 . 92 − 3 . 57 2 . 78 − 3 . 75 sin 2 θ 23 / 10 − 1 (NH) 5 . 67 +0 . 32 4 . 14 − 6 . 23 3 . 93 − 6 . 43 − 1 . 24 sin 2 θ 23 / 10 − 1 (IH) 5 . 73 +0 . 25 4 . 35 − 6 . 21 4 . 03 − 6 . 40 − 0 . 39 sin 2 θ 13 / 10 − 2 (NH) 2 . 26 ± 0 . 12 2 . 02 − 2 . 50 1 . 90 − 2 . 62 sin 2 θ 13 / 10 − 2 (IH) 2 . 29 ± 0 . 12 2 . 05 − 2 . 52 1 . 93 − 2 . 65 1 . 41 +0 . 55 δ/π (NH) 0 . 0 − 2 . 0 0 . 0 − 2 . 0 − 0 . 40 δ/π (IH) 1 . 48 ± 0 . 31 0 . 00 − 0 . 09 & 0 . 86 − 2 . 0 0 . 0 − 2 . 0 The allowed ranges of | ( U PMNS ) ij | are explicitly given at the 3 σ level: NH IH     0 . 780 − 0 . 842 0 . 520 − 0 . 607 0 . 137 − 0 . 162 0 . 779 − 0 . 842 0 . 520 − 0 . 607 0 . 139 − 0 . 163 0 . 207 − 0 . 555 0 . 395 − 0 . 714 0 . 618 − 0 . 794 0 . 207 − 0 . 554 0 . 397 − 0 . 710 0 . 626 − 0 . 792     0 . 226 − 0 . 566 0 . 420 − 0 . 731 0 . 590 − 0 . 772 0 . 229 − 0 . 566 0 . 426 − 0 . 729 0 . 592 − 0 . 765 1D. V. Forero et al. Phys. Rev. D 90 , 093006 (2014) F. Gonzalez-Canales (CINVESTAV) Remnant CP 5/18 May 24, 2016 5 / 18

  9. The neutrino oscillation data NH IH  0 . 780 − 0 . 842 0 . 520 − 0 . 607 0 . 137 − 0 . 162   0 . 779 − 0 . 842 0 . 520 − 0 . 607 0 . 139 − 0 . 163 �� � � �� �� � � 0 . 207 − 0 . 555 0 . 395 − 0 . 714 0 . 618 − 0 . 794 � 0 . 207 − 0 . 554 0 . 397 − 0 . 710 0 . 626 − 0 . 792    �    �� � � �� �� � � 0 . 226 − 0 . 566 0 . 420 − 0 . 731 0 . 590 − 0 . 772 � 0 . 229 − 0 . 566 0 . 426 − 0 . 729 0 . 592 − 0 . 765 � ⋆ The | U µi | ≃ | U τi | relation. Approximate µ − τ relation. ⋆ Exact µ − τ relation | U µi | = | U τi | . This equality holds if either of the following two sets of conditions can be satisfied.  θ 23 = π 4 , θ 13 = 0;  | U µi | = | U τi | ⇔ θ 23 = π 4 , δ CP = ± π 2 .  It is clear that θ 13 has already bee ruled out, but θ 23 = π 4 and δ CP = − π 2 are both allowed at the 1 or 2 σ level (and δ CP = π 2 is also allowed at the 3 σ ). F. Gonzalez-Canales (CINVESTAV) Remnant CP 6/18 May 24, 2016 6 / 18

  10. The µ − τ Flavor Symmetry We claim that there must be a partial or approximate µ − τ flavor symmetry behind the observed pattern of the PMNS matrix. The µ − τ symmetry gives the constraint that Lagrangian is invariant under transformation of µ and τ neutrinos states. ⋆ The µ − τ permutation symmetry The neutrino mass term is unchanged under the transformations; ν e − → ν e , ν µ − → ν τ , ν τ − → ν µ . ⋆ The µ − τ reflection symmetry The neutrino mass term is unchanged under the transformations 2 ; → ν c → ν c → ν c ν e − e , ν µ − τ , ν τ − µ . 2 The superscript c denotes the charged conjugation. F. Gonzalez-Canales (CINVESTAV) Remnant CP 7/18 May 24, 2016 7 / 18

  11. Generalized µ − τ reflection This interesting CP transformation takes the following form: e iα  0 0  e iβ cos Θ ie i ( β + γ ) X = 0 sin Θ  ,  2   ie i ( β + γ ) e iγ cos Θ 0 sin Θ 2 where the parameters α , β , γ , and Θ are real. F. Gonzalez-Canales (CINVESTAV) Remnant CP 8/18 May 24, 2016 8 / 18

  12. Generalized µ − τ reflection This interesting CP transformation takes the following form: e iα  0 0  e iβ cos Θ ie i ( β + γ ) X = 0 sin Θ  ,  2   ie i ( β + γ ) e iγ cos Θ 0 sin Θ 2 where the parameters α , β , γ , and Θ are real. The corresponding Takagi factorization matrix is given by e i α   0 0 2 e i β ie i β Σ = 2 cos Θ 2 sin Θ  .  0  2 2  ie i γ e i γ 2 sin Θ 2 cos Θ 0 2 2 F. Gonzalez-Canales (CINVESTAV) Remnant CP 8/18 May 24, 2016 8 / 18

  13. Generalized µ − τ reflection This interesting CP transformation takes the following form: e iα  0 0  e iβ cos Θ ie i ( β + γ ) X = 0 sin Θ  ,  2   ie i ( β + γ ) e iγ cos Θ 0 sin Θ 2 where the parameters α , β , γ , and Θ are real. The corresponding Takagi factorization matrix is given by e i α   0 0 2 e i β ie i β Σ = 2 cos Θ 2 sin Θ  .  0  2 2  ie i γ e i γ 2 sin Θ 2 cos Θ 0 2 2 As a result the resulting lepton mixing angles are determined as sin 2 θ 13 = sin 2 θ 2 , sin 2 θ 12 = sin 2 θ 3 , sin 2 θ 23 = 1 2 (1 − cos Θ cos 2 θ 1 ) , F. Gonzalez-Canales (CINVESTAV) Remnant CP 8/18 May 24, 2016 8 / 18

  14. Generalized µ − τ reflection This interesting CP transformation takes the following form: e iα  0 0  e iβ cos Θ ie i ( β + γ ) X = 0 sin Θ  ,  2   ie i ( β + γ ) e iγ cos Θ 0 sin Θ 2 where the parameters α , β , γ , and Θ are real. The corresponding Takagi factorization matrix is given by e i α   0 0 2 e i β ie i β Σ = 2 cos Θ 2 sin Θ  .  0  2 2  ie i γ e i γ 2 sin Θ 2 cos Θ 0 2 2 As a result the resulting lepton mixing angles are determined as sin 2 θ 13 = sin 2 θ 2 , sin 2 θ 12 = sin 2 θ 3 , sin 2 θ 23 = 1 2 (1 − cos Θ cos 2 θ 1 ) , while the CP violation parameters are predicted as 4 sin Θ sin θ 2 sin 2 θ 3 cos 2 θ 2 , J CP = 1 sin δ CP = sin Θ sign[sin θ 2 sin 2 θ 3 ] √ , 1 − cos 2 Θ cos 2 2 θ 1 φ 12 = k 2 − k 1 φ 13 = k 3 − k 1 δ CP = k 3 − k 2 tan δ CP = tan Θ csc 2 θ 1 , π , π , π − φ 23 . 2 2 2 F. Gonzalez-Canales (CINVESTAV) Remnant CP 8/18 May 24, 2016 8 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend