the quest of efficiency and certification in polynomial
play

The quest of efficiency and certification in polynomial optimization - PowerPoint PPT Presentation

The quest of efficiency and certification in polynomial optimization Victor Magron , CNRSLAAS SPOT, Toulouse 4 November 2019 6 5 1 4 3 2 The Moment-Sums of Squares Hierarchy NP-hard NON CONVEX Problem f = inf f ( x ) Theory


  1. Preliminary Comparisons f ( x ) : = x 2 x 5 + x 3 x 6 − x 2 x 3 − x 5 x 6 + x 1 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 ) x ∈ [ 4.00, 6.36 ] 6 , e ∈ [ − ǫ , ǫ ] 15 , ǫ = 2 − 53 Dense SDP: ( 6 + 15 + 4 6 + 15 ) = 12650 variables ❀ Out of memory Sparse SDP Real2Float tool: 15 ( 6 + 1 + 4 6 + 1 ) = 4950 ❀ 759 ǫ Victor Magron The quest of efficiency and certification in polynomial optimization 12 / 42

  2. Preliminary Comparisons f ( x ) : = x 2 x 5 + x 3 x 6 − x 2 x 3 − x 5 x 6 + x 1 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 ) x ∈ [ 4.00, 6.36 ] 6 , e ∈ [ − ǫ , ǫ ] 15 , ǫ = 2 − 53 Dense SDP: ( 6 + 15 + 4 6 + 15 ) = 12650 variables ❀ Out of memory Sparse SDP Real2Float tool: 15 ( 6 + 1 + 4 6 + 1 ) = 4950 ❀ 759 ǫ Interval arithmetic: 922 ǫ (10 × less CPU) Victor Magron The quest of efficiency and certification in polynomial optimization 12 / 42

  3. Preliminary Comparisons f ( x ) : = x 2 x 5 + x 3 x 6 − x 2 x 3 − x 5 x 6 + x 1 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 ) x ∈ [ 4.00, 6.36 ] 6 , e ∈ [ − ǫ , ǫ ] 15 , ǫ = 2 − 53 Dense SDP: ( 6 + 15 + 4 6 + 15 ) = 12650 variables ❀ Out of memory Sparse SDP Real2Float tool: 15 ( 6 + 1 + 4 6 + 1 ) = 4950 ❀ 759 ǫ Interval arithmetic: 922 ǫ (10 × less CPU) Symbolic Taylor FPTaylor tool: 721 ǫ (21 × more CPU) Victor Magron The quest of efficiency and certification in polynomial optimization 12 / 42

  4. Preliminary Comparisons f ( x ) : = x 2 x 5 + x 3 x 6 − x 2 x 3 − x 5 x 6 + x 1 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 ) x ∈ [ 4.00, 6.36 ] 6 , e ∈ [ − ǫ , ǫ ] 15 , ǫ = 2 − 53 Dense SDP: ( 6 + 15 + 4 6 + 15 ) = 12650 variables ❀ Out of memory Sparse SDP Real2Float tool: 15 ( 6 + 1 + 4 6 + 1 ) = 4950 ❀ 759 ǫ Interval arithmetic: 922 ǫ (10 × less CPU) Symbolic Taylor FPTaylor tool: 721 ǫ (21 × more CPU) SMT-based rosa tool: 762 ǫ (19 × more CPU) Victor Magron The quest of efficiency and certification in polynomial optimization 12 / 42

  5. Preliminary Comparisons 1,000 762 ǫ 721 ǫ 800 759 ǫ Error Bound ( ǫ ) 600 400 200 0 a r t o a s o o l r y l a F 2 T P l F a e R CPU Time Victor Magron The quest of efficiency and certification in polynomial optimization 12 / 42

  6. Comparison with rosa Relative execution time 1 f m 0 . 5 d e x o t c y g z b i w v a − 10 0 10 100 Relative bound precision h u − 0 . 5 q k j p − 1 l r Victor Magron The quest of efficiency and certification in polynomial optimization 13 / 42

  7. Comparison with FPTaylor Relative execution time 1 β t 0 . 5 x w f α c d u v e i b g − 10 0 10 100 a n o m Relative bound precision h − 0 . 5 γ δ q jk p − 1 r l Victor Magron The quest of efficiency and certification in polynomial optimization 14 / 42

  8. Noncommutative (NC) Polynomials Symmetric Matrix variables X i , Y j f = X 1 ( Y 1 + Y 2 + Y 3 ) + X 2 ( Y 1 + Y 2 − Y 3 ) + X 3 ( Y 1 − Y 2 ) − X 1 − 2 Y 1 − Y 2 with X 1 X 2 � = X 2 X 1 , involution ( X 1 Y 3 ) ⋆ = Y 3 X 1 Victor Magron The quest of efficiency and certification in polynomial optimization 15 / 42

  9. Noncommutative (NC) Polynomials Symmetric Matrix variables X i , Y j f = X 1 ( Y 1 + Y 2 + Y 3 ) + X 2 ( Y 1 + Y 2 − Y 3 ) + X 3 ( Y 1 − Y 2 ) − X 1 − 2 Y 1 − Y 2 with X 1 X 2 � = X 2 X 1 , involution ( X 1 Y 3 ) ⋆ = Y 3 X 1 Constraints K = { ( X , Y ) : X i , Y j � 0, X 2 i = X i , Y 2 j = Y j , X i Y j = Y j X i } Victor Magron The quest of efficiency and certification in polynomial optimization 15 / 42

  10. Noncommutative (NC) Polynomials Symmetric Matrix variables X i , Y j f = X 1 ( Y 1 + Y 2 + Y 3 ) + X 2 ( Y 1 + Y 2 − Y 3 ) + X 3 ( Y 1 − Y 2 ) − X 1 − 2 Y 1 − Y 2 with X 1 X 2 � = X 2 X 1 , involution ( X 1 Y 3 ) ⋆ = Y 3 X 1 Constraints K = { ( X , Y ) : X i , Y j � 0, X 2 i = X i , Y 2 j = Y j , X i Y j = Y j X i } M INIMAL EIGENVALUE OPTIMIZATION λ min = inf {� f ( X , Y ) v , v � : ( X , Y ) ∈ K , � v � = 1 } Victor Magron The quest of efficiency and certification in polynomial optimization 15 / 42

  11. Noncommutative (NC) Polynomials Symmetric Matrix variables X i , Y j f = X 1 ( Y 1 + Y 2 + Y 3 ) + X 2 ( Y 1 + Y 2 − Y 3 ) + X 3 ( Y 1 − Y 2 ) − X 1 − 2 Y 1 − Y 2 with X 1 X 2 � = X 2 X 1 , involution ( X 1 Y 3 ) ⋆ = Y 3 X 1 Constraints K = { ( X , Y ) : X i , Y j � 0, X 2 i = X i , Y 2 j = Y j , X i Y j = Y j X i } M INIMAL EIGENVALUE OPTIMIZATION λ min = inf {� f ( X , Y ) v , v � : ( X , Y ) ∈ K , � v � = 1 } = sup λ f ( X , Y ) − λ I � 0 , ∀ ( X , Y ) ∈ K s.t. Victor Magron The quest of efficiency and certification in polynomial optimization 15 / 42

  12. Putinar’s Representation “ Archimedean ” constraint in K = { X : g j ( X ) � 0 } : N − ∑ i X 2 i � 0 Theorem: NC Putinar’s representation [Helton-McCullough 02] f = ∑ i s i + ∑ s ⋆ t ⋆ j ∑ f ≻ 0 on K = ⇒ ji g j t ji with s i , t ji ∈ R � X � i i Victor Magron The quest of efficiency and certification in polynomial optimization 16 / 42

  13. Putinar’s Representation “ Archimedean ” constraint in K = { X : g j ( X ) � 0 } : N − ∑ i X 2 i � 0 Theorem: NC Putinar’s representation [Helton-McCullough 02] f = ∑ i s i + ∑ s ⋆ t ⋆ j ∑ f ≻ 0 on K = ⇒ ji g j t ji with s i , t ji ∈ R � X � i i NC variant of Lasserre’s Hierarchy for λ min : replace “ f − λ I � 0 on K ” by f − λ I = ∑ i s ⋆ i s i + ∑ j ∑ i t ⋆ ji g j t ji with s i , t ji of bounded degrees Victor Magron The quest of efficiency and certification in polynomial optimization 16 / 42

  14. Sparse Putinar’s Representation Sparse f = f 1 + · · · + f p with f k ∈ R � X , I k � Sparse K = { X : g j ( X ) � 0 } with g j ∈ R � X , I k ( j ) � for some k ( j ) Additional constraints n k − ∑ i ∈ I k X 2 i � 0 in K Victor Magron The quest of efficiency and certification in polynomial optimization 17 / 42

  15. Sparse Putinar’s Representation Sparse f = f 1 + · · · + f p with f k ∈ R � X , I k � Sparse K = { X : g j ( X ) � 0 } with g j ∈ R � X , I k ( j ) � for some k ( j ) Additional constraints n k − ∑ i ∈ I k X 2 i � 0 in K R UNNING I NTERSECTION P ROPERTY (RIP) � ∀ k = 1, . . . , p − 1 I k + 1 ∩ I j ⊆ I i for some i � k j � k Victor Magron The quest of efficiency and certification in polynomial optimization 17 / 42

  16. Sparse Putinar’s Representation Sparse f = f 1 + · · · + f p with f k ∈ R � X , I k � Sparse K = { X : g j ( X ) � 0 } with g j ∈ R � X , I k ( j ) � for some k ( j ) Additional constraints n k − ∑ i ∈ I k X 2 i � 0 in K R UNNING I NTERSECTION P ROPERTY (RIP) � ∀ k = 1, . . . , p − 1 I k + 1 ∩ I j ⊆ I i for some i � k j � k Theorem: Sparse Putinar’s representation [Klep-M.-Povh 19] f = ∑ ki s ki + ∑ s ⋆ t ji ⋆ g j t ji k ∑ j ∑ f ≻ 0 on K + RIP = ⇒ i i with s ki ∈ R � X , I k � , t ji ∈ R � X , I k ( j ) � Victor Magron The quest of efficiency and certification in polynomial optimization 17 / 42

  17. Sparse Example: I 3322 Bell Inequality Entanglement in quantum mechanics → upper bounds for violation levels of Bell inequalities Victor Magron The quest of efficiency and certification in polynomial optimization 18 / 42

  18. Sparse Example: I 3322 Bell Inequality Entanglement in quantum mechanics → upper bounds for violation levels of Bell inequalities → upper bounds on λ max of f on K Victor Magron The quest of efficiency and certification in polynomial optimization 18 / 42

  19. Sparse Example: I 3322 Bell Inequality Entanglement in quantum mechanics → upper bounds for violation levels of Bell inequalities → upper bounds on λ max of f on K I 3322 Bell inequality f = X 1 ( Y 1 + Y 2 + Y 3 ) + X 2 ( Y 1 + Y 2 − Y 3 ) + X 3 ( Y 1 − Y 2 ) − X 1 − 2 Y 1 − Y 2 K = { ( X , Y ) : X i , Y j � 0, X 2 i = X i , Y 2 j = Y j , X i Y j = Y j X i } Victor Magron The quest of efficiency and certification in polynomial optimization 18 / 42

  20. Sparse Example: I 3322 Bell Inequality Entanglement in quantum mechanics → upper bounds for violation levels of Bell inequalities → upper bounds on λ max of f on K I 3322 Bell inequality f = X 1 ( Y 1 + Y 2 + Y 3 ) + X 2 ( Y 1 + Y 2 − Y 3 ) + X 3 ( Y 1 − Y 2 ) − X 1 − 2 Y 1 − Y 2 K = { ( X , Y ) : X i , Y j � 0, X 2 i = X i , Y 2 j = Y j , X i Y j = Y j X i } I k → { X 1 , X 2 , X 3 , Y k } Victor Magron The quest of efficiency and certification in polynomial optimization 18 / 42

  21. Sparse Example: I 3322 Bell Inequality Entanglement in quantum mechanics → upper bounds for violation levels of Bell inequalities → upper bounds on λ max of f on K I 3322 Bell inequality f = X 1 ( Y 1 + Y 2 + Y 3 ) + X 2 ( Y 1 + Y 2 − Y 3 ) + X 3 ( Y 1 − Y 2 ) − X 1 − 2 Y 1 − Y 2 K = { ( X , Y ) : X i , Y j � 0, X 2 i = X i , Y 2 j = Y j , X i Y j = Y j X i } I k → { X 1 , X 2 , X 3 , Y k } level sparse dense [Pál-Vértesi 18] 2 0.2550008 0.2509397 Victor Magron The quest of efficiency and certification in polynomial optimization 18 / 42

  22. Sparse Example: I 3322 Bell Inequality Entanglement in quantum mechanics → upper bounds for violation levels of Bell inequalities → upper bounds on λ max of f on K I 3322 Bell inequality f = X 1 ( Y 1 + Y 2 + Y 3 ) + X 2 ( Y 1 + Y 2 − Y 3 ) + X 3 ( Y 1 − Y 2 ) − X 1 − 2 Y 1 − Y 2 K = { ( X , Y ) : X i , Y j � 0, X 2 i = X i , Y 2 j = Y j , X i Y j = Y j X i } I k → { X 1 , X 2 , X 3 , Y k } level sparse dense [Pál-Vértesi 18] 2 0.2550008 0.2509397 3 0.2511592 0.2508756 Victor Magron The quest of efficiency and certification in polynomial optimization 18 / 42

  23. Sparse Example: I 3322 Bell Inequality Entanglement in quantum mechanics → upper bounds for violation levels of Bell inequalities → upper bounds on λ max of f on K I 3322 Bell inequality f = X 1 ( Y 1 + Y 2 + Y 3 ) + X 2 ( Y 1 + Y 2 − Y 3 ) + X 3 ( Y 1 − Y 2 ) − X 1 − 2 Y 1 − Y 2 K = { ( X , Y ) : X i , Y j � 0, X 2 i = X i , Y 2 j = Y j , X i Y j = Y j X i } I k → { X 1 , X 2 , X 3 , Y k } level sparse dense [Pál-Vértesi 18] 2 0.2550008 0.2509397 3 0.2511592 0.2508756 3’ 0.2508754 Victor Magron The quest of efficiency and certification in polynomial optimization 18 / 42

  24. Sparse Example: I 3322 Bell Inequality Entanglement in quantum mechanics → upper bounds for violation levels of Bell inequalities → upper bounds on λ max of f on K I 3322 Bell inequality f = X 1 ( Y 1 + Y 2 + Y 3 ) + X 2 ( Y 1 + Y 2 − Y 3 ) + X 3 ( Y 1 − Y 2 ) − X 1 − 2 Y 1 − Y 2 K = { ( X , Y ) : X i , Y j � 0, X 2 i = X i , Y 2 j = Y j , X i Y j = Y j X i } I k → { X 1 , X 2 , X 3 , Y k } level sparse dense [Pál-Vértesi 18] 2 0.2550008 0.2509397 3 0.2511592 0.2508756 3’ 0.2508754 4 0.2508917 Victor Magron The quest of efficiency and certification in polynomial optimization 18 / 42

  25. Sparse Example: I 3322 Bell Inequality Entanglement in quantum mechanics → upper bounds for violation levels of Bell inequalities → upper bounds on λ max of f on K I 3322 Bell inequality f = X 1 ( Y 1 + Y 2 + Y 3 ) + X 2 ( Y 1 + Y 2 − Y 3 ) + X 3 ( Y 1 − Y 2 ) − X 1 − 2 Y 1 − Y 2 K = { ( X , Y ) : X i , Y j � 0, X 2 i = X i , Y 2 j = Y j , X i Y j = Y j X i } I k → { X 1 , X 2 , X 3 , Y k } level sparse dense [Pál-Vértesi 18] 2 0.2550008 0.2509397 3 0.2511592 0.2508756 3’ 0.2508754 4 0.2508917 5 0.2508763 Victor Magron The quest of efficiency and certification in polynomial optimization 18 / 42

  26. Sparse Example: I 3322 Bell Inequality Entanglement in quantum mechanics → upper bounds for violation levels of Bell inequalities → upper bounds on λ max of f on K I 3322 Bell inequality f = X 1 ( Y 1 + Y 2 + Y 3 ) + X 2 ( Y 1 + Y 2 − Y 3 ) + X 3 ( Y 1 − Y 2 ) − X 1 − 2 Y 1 − Y 2 K = { ( X , Y ) : X i , Y j � 0, X 2 i = X i , Y 2 j = Y j , X i Y j = Y j X i } I k → { X 1 , X 2 , X 3 , Y k } level sparse dense [Pál-Vértesi 18] 2 0.2550008 0.2509397 3 0.2511592 0.2508756 3’ 0.2508754 4 0.2508917 5 0.2508763 6 0.2508753977180 !!!!! Victor Magron The quest of efficiency and certification in polynomial optimization 18 / 42

  27. Exploiting Sparsity Certified Polynomial Optimization

  28. Certified Polynomial Optimization X = ( X 1 , . . . , X n ) co-NP hard problem: check f � 0 on K NP hard problem: min { f ( x ) : x ∈ K } f ∈ Q [ X ] Victor Magron The quest of efficiency and certification in polynomial optimization 19 / 42

  29. Certified Polynomial Optimization X = ( X 1 , . . . , X n ) co-NP hard problem: check f � 0 on K NP hard problem: min { f ( x ) : x ∈ K } f ∈ Q [ X ] 1 Unconstrained � K = R n 2 Constrained � K = { x ∈ R n : g 1 ( x ) � 0, . . . , g l ( x ) � 0 } g j ∈ Q [ X ] deg f , deg g j � d Victor Magron The quest of efficiency and certification in polynomial optimization 19 / 42

  30. Certified Polynomial Optimization X = ( X 1 , . . . , X n ) co-NP hard problem: check f � 0 on K NP hard problem: min { f ( x ) : x ∈ K } f ∈ Q [ X ] 1 Unconstrained � K = R n 2 Constrained � K = { x ∈ R n : g 1 ( x ) � 0, . . . , g l ( x ) � 0 } g j ∈ Q [ X ] deg f , deg g j � d [Collins 75] CAD doubly exp. in n poly. in d [Grigoriev-Vorobjov 88, Basu-Pollack-Roy 98] Critical points singly exponential time ( l + 1 ) τ d O ( n ) Victor Magron The quest of efficiency and certification in polynomial optimization 19 / 42

  31. Certified Polynomial Optimization Sums of squares (SOS) σ = h 12 + · · · + h p 2 Victor Magron The quest of efficiency and certification in polynomial optimization 20 / 42

  32. Certified Polynomial Optimization Sums of squares (SOS) σ = h 12 + · · · + h p 2 H ILBERT 17 TH P ROBLEM : f SOS of rational functions? [Artin 27] YES ! Victor Magron The quest of efficiency and certification in polynomial optimization 20 / 42

  33. Certified Polynomial Optimization Sums of squares (SOS) σ = h 12 + · · · + h p 2 H ILBERT 17 TH P ROBLEM : f SOS of rational functions? [Artin 27] YES ! [Lasserre/Parrilo 01] Numerical solvers compute σ Semidefinite programming (SDP) � approximate certificates Victor Magron The quest of efficiency and certification in polynomial optimization 20 / 42

  34. Certified Polynomial Optimization Sums of squares (SOS) σ = h 12 + · · · + h p 2 H ILBERT 17 TH P ROBLEM : f SOS of rational functions? [Artin 27] YES ! [Lasserre/Parrilo 01] Numerical solvers compute σ Semidefinite programming (SDP) � approximate certificates → ≃ = The Question of Exact Certification How to go from approximate to exact certification? Victor Magron The quest of efficiency and certification in polynomial optimization 20 / 42

  35. Motivation Positivity certificates Stability proofs of critical control systems (Lyapunov) Certified function evaluation [Chevillard et. al 11] Formal verification of real inequalities [Hales et. al 15]: C OQ H OL - LIGHT Victor Magron The quest of efficiency and certification in polynomial optimization 21 / 42

  36. Decomposing Nonnegative Polynomials σ f = 1 Polya ’s representation ( X 2 1 + ··· + X 2 n ) D positive definite form f [Reznick 95] f = σ 2 Hilbert-Artin ’s representation h 2 f � 0 [Artin 27] f = σ 0 + σ 1 g 1 + · · · + σ l g l 3 Putinar ’s representation f > 0 on compact K deg σ i � 2 D [Putinar 93] Victor Magron The quest of efficiency and certification in polynomial optimization 22 / 42

  37. Decomposing Nonnegative Polynomials Deciding polynomial nonnegativity f ( a , b ) = a 2 − 2 ab + b 2 � 0 � � � � � � z 1 z 2 a f ( a , b ) = a b z 2 z 3 b � �� � � 0 a 2 − 2 ab + b 2 = z 1 a 2 + 2 z 2 ab + z 3 b 2 ( A z = d ) � z 1 � � 1 � � 0 � � 0 � � 0 � z 2 0 1 0 0 = z 1 + z 2 + z 3 � z 2 z 3 0 0 1 0 0 1 0 0 � �� � � �� � � �� � � �� � F 1 F 2 F 3 F 0 Victor Magron The quest of efficiency and certification in polynomial optimization 23 / 42

  38. Decomposing Nonnegative Polynomials Choose a cost c e.g. ( 1, 0, 1 ) and solve SDP ⊤ z min c z ∑ s.t. F i z i � F 0 , A z = d i � 1 � z 1 � � − 1 z 2 Solution = � 0 (eigenvalues 0 and 2) − 1 z 2 z 3 1 � � 1 � � a � − 1 a 2 − 2 ab + b 2 = � = ( a − b ) 2 a b − 1 1 b � �� � � 0 Solving SDP = ⇒ Finding S UMS OF S QUARES certificates Victor Magron The quest of efficiency and certification in polynomial optimization 24 / 42

  39. From Approximate to Exact Solutions A PPROXIMATE SOLUTIONS sum of squares of a 2 − 2 ab + b 2 ? ( 1.00001 a − 0.99998 b ) 2 ! a 2 − 2 ab + b 2 ≃ ( 1.00001 a − 0.99998 b ) 2 a 2 − 2 ab + b 2 � = 1.0000200001 a 2 − 1.9999799996 ab + 0.9999600004 b 2 → = ? ≃ Victor Magron The quest of efficiency and certification in polynomial optimization 25 / 42

  40. Rational SOS Decompositions Let f ∈ R [ X ] and f � 0 on R ( n = 1 ) Theorem There exist f 1 , f 2 ∈ R [ X ] s.t. f = f 12 + f 22 . Victor Magron The quest of efficiency and certification in polynomial optimization 26 / 42

  41. Rational SOS Decompositions Let f ∈ R [ X ] and f � 0 on R ( n = 1 ) Theorem There exist f 1 , f 2 ∈ R [ X ] s.t. f = f 12 + f 22 . Proof. f = h 2 ( q + ir )( q − ir ) Victor Magron The quest of efficiency and certification in polynomial optimization 26 / 42

  42. Rational SOS Decompositions Let f ∈ R [ X ] and f � 0 on R ( n = 1 ) Theorem There exist f 1 , f 2 ∈ R [ X ] s.t. f = f 12 + f 22 . Proof. f = h 2 ( q + ir )( q − ir ) Examples � √ � 2 � 2 � X + 1 3 1 + X + X 2 = + 2 2 √ � � 2 2 X + 1 + X 2 + 1 5 1 + X + X 2 + X 3 + X 4 = + 4 √ √ √ � � � � � 2 10 + 2 5 + 10 − 2 10 − 2 5 5 X + 4 4 Victor Magron The quest of efficiency and certification in polynomial optimization 26 / 42

  43. Rational SOS Decompositions f ∈ Q [ X ] ∩ ˚ Σ [ X ] (interior of the SOS cone) Existence Question Does there exist f i ∈ Q [ X ] , c i ∈ Q > 0 s.t. f = ∑ i c i f i 2 ? Victor Magron The quest of efficiency and certification in polynomial optimization 27 / 42

  44. Rational SOS Decompositions f ∈ Q [ X ] ∩ ˚ Σ [ X ] (interior of the SOS cone) Existence Question Does there exist f i ∈ Q [ X ] , c i ∈ Q > 0 s.t. f = ∑ i c i f i 2 ? Examples � √ � � 2 � 2 � � 2 X + 1 3 X + 1 + 3 1 + X + X 2 = 4 ( 1 ) 2 + = 1 2 2 2 √ � � 2 X 2 + 1 2 X + 1 + 5 1 + X + X 2 + X 3 + X 4 = + 4 √ √ √ � 2 � � � � 10 + 2 5 + 10 − 2 10 − 2 5 5 X + = ??? 4 4 Victor Magron The quest of efficiency and certification in polynomial optimization 27 / 42

  45. Round & Project Algorithm [Peyrl-Parrilo 08] f f ∈ ˚ Σ Σ [ X ] with deg f = 2 D Victor Magron The quest of efficiency and certification in polynomial optimization 28 / 42

  46. Round & Project Algorithm [Peyrl-Parrilo 08] f f ∈ ˚ Σ Σ [ X ] with deg f = 2 D Find ˜ G with SDP at tolerance ˜ δ satisfying f ( X ) ≃ v DT ( X ) ˜ ˜ G v D ( X ) G ≻ 0 v D ( X ) : vector of monomials of deg � D Victor Magron The quest of efficiency and certification in polynomial optimization 28 / 42

  47. Round & Project Algorithm [Peyrl-Parrilo 08] f f ∈ ˚ Σ Σ [ X ] with deg f = 2 D Find ˜ G with SDP at tolerance ˜ δ satisfying f ( X ) ≃ v DT ( X ) ˜ ˜ G v D ( X ) G ≻ 0 v D ( X ) : vector of monomials of deg � D Exact G = ⇒ f γ = ∑ α ′ + β ′ = γ G α ′ , β ′ Victor Magron The quest of efficiency and certification in polynomial optimization 28 / 42

  48. Round & Project Algorithm [Peyrl-Parrilo 08] f f ∈ ˚ Σ Σ [ X ] with deg f = 2 D Find ˜ G with SDP at tolerance ˜ δ satisfying f ( X ) ≃ v DT ( X ) ˜ ˜ G v D ( X ) G ≻ 0 v D ( X ) : vector of monomials of deg � D Exact G = ⇒ f γ = ∑ α ′ + β ′ = γ G α ′ , β ′ f α + β = ∑ α ′ + β ′ = α + β G α ′ , β ′ Victor Magron The quest of efficiency and certification in polynomial optimization 28 / 42

  49. Round & Project Algorithm [Peyrl-Parrilo 08] f f ∈ ˚ Σ Σ [ X ] with deg f = 2 D Find ˜ G with SDP at tolerance ˜ δ satisfying f ( X ) ≃ v DT ( X ) ˜ ˜ G v D ( X ) G ≻ 0 v D ( X ) : vector of monomials of deg � D Exact G = ⇒ f γ = ∑ α ′ + β ′ = γ G α ′ , β ′ f α + β = ∑ α ′ + β ′ = α + β G α ′ , β ′ � ˜ � 1 Rounding step ˆ G , ˆ G ← round δ Victor Magron The quest of efficiency and certification in polynomial optimization 28 / 42

  50. Round & Project Algorithm [Peyrl-Parrilo 08] f f ∈ ˚ Σ Σ [ X ] with deg f = 2 D Find ˜ G with SDP at tolerance ˜ δ satisfying f ( X ) ≃ v DT ( X ) ˜ ˜ G v D ( X ) G ≻ 0 v D ( X ) : vector of monomials of deg � D Exact G = ⇒ f γ = ∑ α ′ + β ′ = γ G α ′ , β ′ f α + β = ∑ α ′ + β ′ = α + β G α ′ , β ′ � ˜ � 1 Rounding step ˆ G , ˆ G ← round δ 2 Projection step G α , β ← ˆ η ( α + β ) ( ∑ α ′ + β ′ = α + β ˆ 1 G α , β − G α ′ , β ′ − f α + β ) Victor Magron The quest of efficiency and certification in polynomial optimization 28 / 42

  51. Round & Project Algorithm [Peyrl-Parrilo 08] f f ∈ ˚ Σ Σ [ X ] with deg f = 2 D Find ˜ G with SDP at tolerance ˜ δ satisfying f ( X ) ≃ v DT ( X ) ˜ ˜ G v D ( X ) G ≻ 0 v D ( X ) : vector of monomials of deg � D Exact G = ⇒ f γ = ∑ α ′ + β ′ = γ G α ′ , β ′ f α + β = ∑ α ′ + β ′ = α + β G α ′ , β ′ � ˜ � 1 Rounding step ˆ G , ˆ G ← round δ 2 Projection step G α , β ← ˆ η ( α + β ) ( ∑ α ′ + β ′ = α + β ˆ 1 G α , β − G α ′ , β ′ − f α + β ) Small enough ˜ δ , ˆ ⇒ f ( X ) = v DT ( X ) G v D ( X ) and G � 0 δ = Victor Magron The quest of efficiency and certification in polynomial optimization 28 / 42

  52. One Answer when K = { x ∈ R n : g j ( x ) � 0 } Hybrid S YMBOLIC /N UMERIC methods Magron-Allamigeon-Gaubert-Werner 14 f ≃ ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m u = f − ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m Victor Magron The quest of efficiency and certification in polynomial optimization 29 / 42

  53. One Answer when K = { x ∈ R n : g j ( x ) � 0 } Hybrid S YMBOLIC /N UMERIC methods Magron-Allamigeon-Gaubert-Werner 14 Compact K ⊆ [ 0, 1 ] n f ≃ ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m u = f − ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m → ≃ = ∀ x ∈ [ 0, 1 ] n , u ( x ) � − ε min K f � ε when ε → 0 C OMPLEXITY ? Victor Magron The quest of efficiency and certification in polynomial optimization 29 / 42

  54. From Approximate to Exact Solutions Win T WO -P LAYER G AME f Σ ≃ Output ! sum of squares of f ? Victor Magron The quest of efficiency and certification in polynomial optimization 30 / 42

  55. From Approximate to Exact Solutions Win T WO -P LAYER G AME f Σ Hybrid Symbolic/Numeric Algorithms sum of squares of f − ε ? ≃ Output ! Error Compensation → ≃ = Victor Magron The quest of efficiency and certification in polynomial optimization 30 / 42

  56. From Approximate to Exact Solutions Exact SOS Exact SONC/SAGE f f f C SONC C SAGE Σ Victor Magron The quest of efficiency and certification in polynomial optimization 31 / 42

  57. Software: RealCertify and POEM Exact optimization via SOS : RealCertify Maple & arbitrary precision SDP solver SDPA-GMP [Nakata 10] univsos n = 1 n > 1 multivsos Exact optimization via SONC/SAGE : POEM Python ( SymPy ) & geometric programming/relative entropy ECOS [Domahidi-Chu-Boyd 13] Victor Magron The quest of efficiency and certification in polynomial optimization 31 / 42

  58. intsos with n � 1 : Perturbation f Σ P ERTURBATION idea Approximate SOS Decomposition f ( X ) - ε ∑ α ∈P /2 X 2 α = ˜ σ + u Victor Magron The quest of efficiency and certification in polynomial optimization 32 / 42

  59. intsos with n = 1 [Chevillard et. al 11] p p ∈ Q [ X ] , deg p = d = 2 k , p > 0 x p = 1 + X + X 2 + X 3 + X 4 Victor Magron The quest of efficiency and certification in polynomial optimization 33 / 42

  60. intsos with n = 1 [Chevillard et. al 11] p p ∈ Q [ X ] , deg p = d = 2 k , p > 0 p ε P ERTURB : find ε ∈ Q s.t. k X 2 i > 0 ∑ p ε : = p − ε i = 0 4 ( 1 + x 2 + x 4 ) 1 x p = 1 + X + X 2 + X 3 + X 4 ε = 1 4 p > 1 4 ( 1 + X 2 + X 4 ) Victor Magron The quest of efficiency and certification in polynomial optimization 33 / 42

  61. intsos with n = 1 [Chevillard et. al 11] p p ∈ Q [ X ] , deg p = d = 2 k , p > 0 p ε P ERTURB : find ε ∈ Q s.t. k X 2 i > 0 ∑ p ε : = p − ε i = 0 4 ( 1 + x 2 + x 4 ) 1 SDP Approximation: x k X 2 i = ˜ ∑ p − ε σ + u p = 1 + X + X 2 + X 3 + X 4 i = 0 ε = 1 4 A BSORB : small enough u i i = 0 X 2 i + u SOS p > 1 ⇒ ε ∑ k 4 ( 1 + X 2 + X 4 ) = Victor Magron The quest of efficiency and certification in polynomial optimization 33 / 42

  62. intsos with n = 1 and SDP Approximation Input f � 0 ∈ Q [ X ] of degree d � 2 , ε ∈ Q > 0 , δ ∈ N > 0 Output : SOS decomposition with coefficients in Q h , ˜ σ , ε , u f ( p , h ) ← sqrfree ( f ) k X 2 i ∑ p ε ← p − ε σ ← sdp ( p ε , δ ) ˜ i = 0 u ← p ε − ˜ σ ε ← ε δ ← 2 δ 2 while while p ε ≤ 0 ε < | u 2 i + 1 | + | u 2 i − 1 | − u 2 i 2 Victor Magron The quest of efficiency and certification in polynomial optimization 34 / 42

  63. intsos with n = 1 : Absorbtion � ( X + 1 ) 2 − 1 − X 2 � X = 1 2 � ( X − 1 ) 2 − 1 − X 2 � − X = 1 2 Victor Magron The quest of efficiency and certification in polynomial optimization 35 / 42

  64. intsos with n = 1 : Absorbtion � ( X + 1 ) 2 − 1 − X 2 � X = 1 2 � ( X − 1 ) 2 − 1 − X 2 � − X = 1 2 u 2 i + 1 X 2 i + 1 = | u 2 i + 1 | � ( X i + 1 + sgn ( u 2 i + 1 ) X i ) 2 − X 2 i − X 2 i + 2 � 2 Victor Magron The quest of efficiency and certification in polynomial optimization 35 / 42

  65. intsos with n = 1 : Absorbtion � ( X + 1 ) 2 − 1 − X 2 � X = 1 2 � ( X − 1 ) 2 − 1 − X 2 � − X = 1 2 u 2 i + 1 X 2 i + 1 = | u 2 i + 1 | � ( X i + 1 + sgn ( u 2 i + 1 ) X i ) 2 − X 2 i − X 2 i + 2 � 2 u · · · · · · 2 i − 2 2 i − 1 2 i 2 i + 1 2 i + 2 ε ∑ k i = 0 X 2 i ε ε ε Victor Magron The quest of efficiency and certification in polynomial optimization 35 / 42

  66. intsos with n = 1 : Absorbtion � ( X + 1 ) 2 − 1 − X 2 � X = 1 2 � ( X − 1 ) 2 − 1 − X 2 � − X = 1 2 u 2 i + 1 X 2 i + 1 = | u 2 i + 1 | � ( X i + 1 + sgn ( u 2 i + 1 ) X i ) 2 − X 2 i − X 2 i + 2 � 2 u · · · · · · 2 i − 2 2 i − 1 2 i 2 i + 1 2 i + 2 ε ∑ k i = 0 X 2 i ε ε ε k ε � | u 2 i + 1 | + | u 2 i − 1 | X 2 i + u ∑ − u 2 i = ⇒ ε SOS 2 i = 0 Victor Magron The quest of efficiency and certification in polynomial optimization 35 / 42

  67. intsos with n � 1 : Absorbtion f ( X ) - ε ∑ α ∈P /2 X 2 α = ˜ σ + u Choice of P ? y 6 ε 2 ( x + y 3 ) 2 − x 2 + y 6 xy 3 = 1 5 2 4 u 1,3 3 2 1 ε x 0 1 2 3 4 5 Victor Magron The quest of efficiency and certification in polynomial optimization 36 / 42

  68. intsos with n � 1 : Absorbtion f ( X ) - ε ∑ α ∈P /2 X 2 α = ˜ σ + u Choice of P ? y 6 2 ( xy + y 2 ) 2 − x 2 y 2 + y 4 xy 3 = 1 5 2 ε 4 u 1,3 3 ε 2 1 x 0 1 2 3 4 5 Victor Magron The quest of efficiency and certification in polynomial optimization 36 / 42

  69. intsos with n � 1 : Absorbtion f ( X ) - ε ∑ α ∈P /2 X 2 α = ˜ σ + u Choice of P ? y 6 2 ( xy 2 + y ) 2 − x 2 y 4 + y 2 xy 3 = 1 5 2 ε 4 3 u 1,3 ε 2 1 x 0 1 2 3 4 5 Victor Magron The quest of efficiency and certification in polynomial optimization 36 / 42

  70. intsos with n � 1 : Absorbtion f ( X ) - ε ∑ α ∈P /2 X 2 α = ˜ σ + u Choice of P ? f = 4 x 4 y 6 + x 2 − xy 2 + y 2 spt ( f ) = { ( 4, 6 ) , ( 2, 0 ) , ( 1, 2 ) , ( 0, 2 ) } Newton Polytope P = conv ( spt ( f )) Squares in SOS decomposition ⊆ P 2 ∩ N n [Reznick 78] Victor Magron The quest of efficiency and certification in polynomial optimization 36 / 42

  71. Algorithm intsos Input f ∈ Q [ X ] ∩ ˚ Σ [ X ] of degree d , ε ∈ Q > 0 , δ ∈ N > 0 Output : SOS decomposition with coefficients in Q h , ˜ σ , ε , u f P ← conv ( spt ( f )) f ε ← f − ε ∑ X 2 α σ ← sdp ( f ε , δ ) ˜ α ∈P /2 u ← f ε − ˜ σ ε ← ε δ ← 2 δ 2 while while f ε ≤ 0 u + ε ∑ X 2 α / ∈ Σ α ∈P /2 Victor Magron The quest of efficiency and certification in polynomial optimization 37 / 42

  72. Algorithm intsos Theorem (Exact Certification Cost in ˚ Σ ) f ∈ Q [ X ] ∩ ˚ Σ [ X ] with deg f = d = 2 k and bit size τ ⇒ intsos terminates with SOS output of bit size τ d O ( n ) = Victor Magron The quest of efficiency and certification in polynomial optimization 38 / 42

  73. Algorithm intsos Theorem (Exact Certification Cost in ˚ Σ ) f ∈ Q [ X ] ∩ ˚ Σ [ X ] with deg f = d = 2 k and bit size τ ⇒ intsos terminates with SOS output of bit size τ d O ( n ) = Victor Magron The quest of efficiency and certification in polynomial optimization 38 / 42

  74. Algorithm Polyasos f positive definite form has Polya ’s representation: σ f = with σ ∈ Σ [ X ] ( X 1 + · · · + X n ) 2 D Victor Magron The quest of efficiency and certification in polynomial optimization 39 / 42

  75. Algorithm Polyasos f positive definite form has Polya ’s representation: σ f = with σ ∈ Σ [ X ] ( X 1 + · · · + X n ) 2 D Theorem f ( X 1 + · · · + X n ) 2 D ∈ Σ [ X ] = ⇒ f ( X 1 + · · · + X n ) 2 D + 2 ∈ ˚ Σ [ X ] Victor Magron The quest of efficiency and certification in polynomial optimization 39 / 42

  76. Algorithm Polyasos f positive definite form has Polya ’s representation: σ f = with σ ∈ Σ [ X ] ( X 1 + · · · + X n ) 2 D Theorem f ( X 1 + · · · + X n ) 2 D ∈ Σ [ X ] = ⇒ f ( X 1 + · · · + X n ) 2 D + 2 ∈ ˚ Σ [ X ] Apply Algorithm intsos on f ( X 1 + · · · + X n ) 2 D + 2 Victor Magron The quest of efficiency and certification in polynomial optimization 39 / 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend