the projective line over the integers
play

The Projective Line Over The Integers Ela Celikbas and Christina - PowerPoint PPT Presentation

The Projective Line Over The Integers Ela Celikbas and Christina Eubanks-Turner Department of Mathematics University of NebraskaLincoln October 2011 AMS Sectional Meeting Lincoln,NE Ela Celikbas and Christina Eubanks-Turner The


  1. The Projective Line Over The Integers Ela Celikbas and Christina Eubanks-Turner Department of Mathematics University of Nebraska–Lincoln October 2011 AMS Sectional Meeting Lincoln,NE Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  2. Motivation For a commutative Noetherian ring R , Spec ( R ) = { prime ideals of R } , poset under ⊆ . Questions. Q1. I. Kaplansky, ’50: What is Spec ( R ) , for a Noetherian ring R ? Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  3. Motivation For a commutative Noetherian ring R , Spec ( R ) = { prime ideals of R } , poset under ⊆ . Questions. Q1. I. Kaplansky, ’50: What is Spec ( R ) , for a Noetherian ring R ? Q2. What is Spec ( R ) for a two-dimensional Noetherian domain R related to a polynomial ring? Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  4. Motivation For a commutative Noetherian ring R , Spec ( R ) = { prime ideals of R } , poset under ⊆ . Questions. Q1. I. Kaplansky, ’50: What is Spec ( R ) , for a Noetherian ring R ? Q2. What is Spec ( R ) for a two-dimensional Noetherian domain R related to a polynomial ring? Q3. What is Spec ( Z [ x ]) ? When is Spec ( R ) ∼ = Spec ( Z [ x ]) ? Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  5. Motivation For a commutative Noetherian ring R , Spec ( R ) = { prime ideals of R } , poset under ⊆ . Questions. Q1. I. Kaplansky, ’50: What is Spec ( R ) , for a Noetherian ring R ? Q2. What is Spec ( R ) for a two-dimensional Noetherian domain R related to a polynomial ring? Q3. What is Spec ( Z [ x ]) ? When is Spec ( R ) ∼ = Spec ( Z [ x ]) ? R. Wiegand, ’86: Characterization of Spec ( Z [ x ]) , the affine line over Z . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  6. 5 Axioms for U := Spec ( Z [ x ]) Notation. ∀ u ∈ poset U , u ↑ := { t | t > u } . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  7. 5 Axioms for U := Spec ( Z [ x ]) Notation. ∀ u ∈ poset U , u ↑ := { t | t > u } . Theorem 1. [RW] U := Spec ( Z [ x ]) ⇐ ⇒ (1) (Obvious Axioms) • | U | = | Z | , • | u ↑ | = ∞ , • dim ( U ) = 2, • | ( u , v ) ↑ | < ∞ , ∀ u � = v , ht ( u ) = ht ( v ) = 1. Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  8. 5 Axioms for U := Spec ( Z [ x ]) Notation. ∀ u ∈ poset U , u ↑ := { t | t > u } . Theorem 1. [RW] U := Spec ( Z [ x ]) ⇐ ⇒ (1) (Obvious Axioms) • | U | = | Z | , • | u ↑ | = ∞ , • dim ( U ) = 2, • | ( u , v ) ↑ | < ∞ , ∀ u � = v , ht ( u ) = ht ( v ) = 1. (2) (Subtle Axiom) (RW) For S ⊆ { ht 1’s } , T ⊆ { ht 2’s } , 0 < | S | < ∞ , | T | < ∞ , ∃ w ∈ { ht 1’s } , ( w , s ) ↑ ⊆ T ⊂ w ↑ . � s ∈ S Definition. w is a radical element for ( S , T ) if (RW) holds. Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  9. The Projective Line Over the Integers Notation. Projective line over Z =Proj ( Z ) � 1 Proj ( Z ) := Spec ( Z [ x ]) ∪ Spec ( Z � ) , with x � 1 ) � Spec ( Z [ x , 1 Spec ( Z [ x ]) ∩ Spec ( Z � x ]) . x Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  10. The Projective Line Over the Integers Notation. Projective line over Z =Proj ( Z ) � 1 Proj ( Z ) := Spec ( Z [ x ]) ∪ Spec ( Z � ) , with x � 1 ) � Spec ( Z [ x , 1 Spec ( Z [ x ]) ∩ Spec ( Z � x ]) . x e.g. ( 4 x 3 + 3 x 2 − 1 ) � ( 4 + 3 · 1 x − 1 · 1 x 3 ) in Spec ( Z [ x , 1 x ]) . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  11. The Projective Line Over the Integers Notation. Projective line over Z =Proj ( Z ) � 1 Proj ( Z ) := Spec ( Z [ x ]) ∪ Spec ( Z � ) , with x � 1 ) � Spec ( Z [ x , 1 Spec ( Z [ x ]) ∩ Spec ( Z � x ]) . x e.g. ( 4 x 3 + 3 x 2 − 1 ) � ( 4 + 3 · 1 x − 1 · 1 x 3 ) in Spec ( Z [ x , 1 x ]) . Characterize Proj ( Z ) ? Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  12. The Projective Line Over the Integers Notation. Projective line over Z =Proj ( Z ) � 1 Proj ( Z ) := Spec ( Z [ x ]) ∪ Spec ( Z � ) , with x � 1 ) � Spec ( Z [ x , 1 Spec ( Z [ x ]) ∩ Spec ( Z � x ]) . x e.g. ( 4 x 3 + 3 x 2 − 1 ) � ( 4 + 3 · 1 x − 1 · 1 x 3 ) in Spec ( Z [ x , 1 x ]) . Characterize Proj ( Z ) ? Proj ( Z ) satisfies the obvious axioms. Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  13. The Projective Line Over the Integers Notation. Projective line over Z =Proj ( Z ) � 1 Proj ( Z ) := Spec ( Z [ x ]) ∪ Spec ( Z � ) , with x � 1 ) � Spec ( Z [ x , 1 Spec ( Z [ x ]) ∩ Spec ( Z � x ]) . x e.g. ( 4 x 3 + 3 x 2 − 1 ) � ( 4 + 3 · 1 x − 1 · 1 x 3 ) in Spec ( Z [ x , 1 x ]) . Characterize Proj ( Z ) ? Proj ( Z ) satisfies the obvious axioms. What about (RW)? ∃ a radical element for finite subsets ∅ � = S of height 1’s and T of height 2’s in Proj ( Z ) ? Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  14. Proj ( Z ) − "Roughly" Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  15. Preliminaries, Previous Results Fact. Proj ( Z ) does not satisfy (RW). [A. Li, S. Wiegand ’97] Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  16. Preliminaries, Previous Results Fact. Proj ( Z ) does not satisfy (RW). [A. Li, S. Wiegand ’97] Example. For S := { ( 1 x ) , ( 2 ) , ( 5 ) } and T := { ( x , 2 ) , ( 1 x , 2 ) , ( 1 x , 3 ) } , ( S , T ) does not have a radical element in Proj ( Z ) . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  17. Preliminaries, Previous Results Fact. Proj ( Z ) does not satisfy (RW). [A. Li, S. Wiegand ’97] Example. For S := { ( 1 x ) , ( 2 ) , ( 5 ) } and T := { ( x , 2 ) , ( 1 x , 2 ) , ( 1 x , 3 ) } , ( S , T ) does not have a radical element in Proj ( Z ) . Sketch. If w radical for ( S , T ) in Proj ( Z ) , then w ⊆ ( 1 x , 2 ) ∩ ( 1 ⇒ w � = ( p ) , p ∈ Z prime. Also w � = ( 1 x , 3 ) = x ) . Thus w = ( g ( x )) , for g irreducible, deg ( g ) > 0. Since ( 5 ) ∈ S , ( g , 5 ) ↑ � = ∅ . But ( g , 5 ) ↑ � T , a contradiction. ∴ ∄ radical element. Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  18. Preliminaries, Previous Results Fact. Proj ( Z ) does not satisfy (RW). [A. Li, S. Wiegand ’97] Example. For S := { ( 1 x ) , ( 2 ) , ( 5 ) } and T := { ( x , 2 ) , ( 1 x , 2 ) , ( 1 x , 3 ) } , ( S , T ) does not have a radical element in Proj ( Z ) . Sketch. If w radical for ( S , T ) in Proj ( Z ) , then w ⊆ ( 1 x , 2 ) ∩ ( 1 ⇒ w � = ( p ) , p ∈ Z prime. Also w � = ( 1 x , 3 ) = x ) . Thus w = ( g ( x )) , for g irreducible, deg ( g ) > 0. Since ( 5 ) ∈ S , ( g , 5 ) ↑ � = ∅ . But ( g , 5 ) ↑ � T , a contradiction. ∴ ∄ radical element. Question. When ∃ radical elements? Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  19. Coefficient Subset Definition. For U poset, dim ( U ) = 2, C ⊆ { ht 1’s } , C = coefficient subset of U if ∀ p ∈ C , | p ↑ | = ∞ ; ∀ p � = q ∈ C , ( p , q ) ↑ = ∅ ; p ∈ C p ↑ = { ht 2’s } ; � p ∈ C , u ∈ { ht 1’s } \ C ⇒ ( p , u ) ↑ � = ∅ , p ↑ = � ( v ∈{ ht 1’s }\ C ) ( p , v ) ↑ ; Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  20. Coefficient Subset Definition. For U poset, dim ( U ) = 2, C ⊆ { ht 1’s } , C = coefficient subset of U if ∀ p ∈ C , | p ↑ | = ∞ ; ∀ p � = q ∈ C , ( p , q ) ↑ = ∅ ; p ∈ C p ↑ = { ht 2’s } ; � p ∈ C , u ∈ { ht 1’s } \ C ⇒ ( p , u ) ↑ � = ∅ , p ↑ = � ( v ∈{ ht 1’s }\ C ) ( p , v ) ↑ ; Proposition 1. [Arnavut] C 0 = { p Z [ x ] | p ∈ Spec ( Z ) } = the unique coefficient subset of Proj ( Z ) . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  21. Conjecture Proposition 2. [Arnavut] Let S ⊆ { ht 1’s } , T ⊆ { ht 2’s } , 0 < | S | < ∞ , | T | < ∞ . Suppose: m ∈ T ( m ↓ ∩ C 0 ) , and S ∩ C 0 ⊆ � x ) ↑ ⊆ T s ∈ S ( s , x ) ↑ ⊆ T . s ∈ S ( s , 1 � � Either or Then ( S , T ) has ∞ radical elements in Proj ( Z ) . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  22. Conjecture Proposition 2. [Arnavut] Let S ⊆ { ht 1’s } , T ⊆ { ht 2’s } , 0 < | S | < ∞ , | T | < ∞ . Suppose: m ∈ T ( m ↓ ∩ C 0 ) , and S ∩ C 0 ⊆ � x ) ↑ ⊆ T s ∈ S ( s , x ) ↑ ⊆ T . s ∈ S ( s , 1 � � Either or Then ( S , T ) has ∞ radical elements in Proj ( Z ) . Conjecture. [Arnavut] Same hypothesis. Suppose: m ∈ T ( m ↓ ∩ C 0 ) , and S ∩ C 0 ⊆ � ( 1 ( x ) ∈ S and x ) ∈ S . Then ∃ ∞ radical elements for ( S , T ) . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  23. Conjecture when T = ∅ Proposition 3. [–, E-T] Let S ⊆ { ht 1’s } , 0 < | S | < ∞ and T = ∅ . Suppose ( 1 • S ∩ C 0 = ∅ ; • ( x ) ∈ S x ) ∈ S . & Then ∃ ∞ radicals for ( S , ∅ ) . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend