introducing adaptive algorithmic behavior of primal
play

Introducing Adaptive Algorithmic Behavior of Primal Heuristics in - PowerPoint PPT Presentation

joint work with Matthias Miltenberger and Jakob Witzig Monash University, Melbourne, Australia, 22 March, 2019 Gregor Hendel SCIPs Adaptive Primal Heuristics 1/32 Introducing Adaptive Algorithmic Behavior of Primal Heuristics in SCIP for


  1. joint work with Matthias Miltenberger and Jakob Witzig Monash University, Melbourne, Australia, 22 March, 2019 Gregor Hendel – SCIP’s Adaptive Primal Heuristics 1/32 Introducing Adaptive Algorithmic Behavior of Primal Heuristics in SCIP for Solving Mixed Integer Programs Gregor Hendel , hendel@zib.de

  2. A research institute and computing center of the State of Berlin with research units: • Numerical Analysis and Modeling • Visualization and Data Analysis • Optimization: • Scientific Information Systems • Computer Science and High Performance Computing Gregor Hendel – SCIP’s Adaptive Primal Heuristics 2/32 Zuse Institute Berlin – Fast Algorithms, Fast Computers Energy – Transportation – Health – Mathematical Optimization Methods

  3. 3/32 Many international contributors and users Gregor Hendel – SCIP’s Adaptive Primal Heuristics FICO Xpress, Gurobi, MOSEK, and GAMS • 7 former developers are now building commercial optimization soħtware at CPLEX, • 10 awards for Masters and PhD theses: MOS, EURO, GOR, DMV Careers • more than 10 000 downloads per year from 100+ countries • RWTH Aachen: GCG 26 active developers • FAU Erlangen-Nürnberg: SCIP • TU Darmstadt: SCIP and SCIP-SDP • ZIB: SCIP, SoPlex, UG, ZIMPL 4 development centers in Germany • 8 postdocs and professors • 14 running PhD projects • 4 running Bachelor and Master projects Meet the SCIP Team

  4. Introduction Large Neighborhood Search for MIP Multi-Armed Bandit Selection SCIP’s Adaptive LNS Reward Function for LNS Computational Results Diving & Adaptive Diving Outlook: Adaptive LP Pricing Gregor Hendel – SCIP’s Adaptive Primal Heuristics 4/32 Overview

  5. Introduction

  6. c T x s.t. (MIP) Solution method: • typically solved with branch-and-cut • at each node, an LP relaxation is (re-)solved with the dual Simplex algorithm • primal heuristics, e.g., Large Neighborhood Search and diving methods, support the solution process Gregor Hendel – SCIP’s Adaptive Primal Heuristics 5/32 Mixed Integer Programs min Ax ≥ b ℓ ≤ x ≤ u x ∈ { 0 , 1 } n b × Z n i − n b × Q n − n i

  7. Introduction Large Neighborhood Search for MIP

  8. Large Neighborhood Search (LNS) heuristics solve auxiliary MIPs and can be c T distinguished by their respective neighborhoods. Gregor Hendel – SCIP’s Adaptive Primal Heuristics 6/32 LNS and the Auxiliary MIP Auxiliary MIP Let P be a MIP with solution set F P . For a polyhedron N ⊆ Q n and objective coeffjcients c aux ∈ Q n , a MIP P aux defined as { } aux x | x ∈ F P ∩ N min is called an auxiliary MIP of P , and N is called neighborhood.

  9. • Improvement neighborhood n c T x 7/32 x inc Gregor Hendel – SCIP’s Adaptive Primal Heuristics c dual c T x inc 1 x obj Typical LNS Neighborhoods Let M ⊆ { 1 , . . . , n i } , x ∗ ∈ Q n . • Fixing neighborhood x ∈ Q n | x j = x ∗ N fix ( M , x ∗ ) := { } j ∀ j ∈ M

  10. Gregor Hendel – SCIP’s Adaptive Primal Heuristics 7/32 Typical LNS Neighborhoods Let M ⊆ { 1 , . . . , n i } , x ∗ ∈ Q n . • Fixing neighborhood x ∈ Q n | x j = x ∗ N fix ( M , x ∗ ) := { } j ∀ j ∈ M • Improvement neighborhood x ∈ Q n | c T x ≤ ( 1 − δ ) · c T x inc + δ · c dual } { N obj ( δ, x inc ) :=

  11. 8/32 x Gregor Hendel – SCIP’s Adaptive Primal Heuristics x inc obj d max b x inc x n LBranch Relaxation Induced Neighborhood Search (RINS) [Danna et al., 2005] Local Branching [Fischetti and Lodi, 2003] Examples of LNS Heuristics N RINS := N fix ( M = ({ x lp , x inc }) , x inc ) ∩ N obj ( δ, x inc ) .

  12. 8/32 Local Branching [Fischetti and Lodi, 2003] Gregor Hendel – SCIP’s Adaptive Primal Heuristics Relaxation Induced Neighborhood Search (RINS) [Danna et al., 2005] Examples of LNS Heuristics N RINS := N fix ( M = ({ x lp , x inc }) , x inc ) ∩ N obj ( δ, x inc ) . x ∈ Q n | { � � x − x inc � } N LBranch := b ≤ d max ∩ N obj ( δ, x inc ) � � �

  13. • RENS [Berthold, 2014] • Proximity [Fischetti and Monaci, 2014] • DINS [Ghosh, 2007] • Zeroobjective [in SCIP, Gurobi, XPress,…] • Analytic Center Search [Berthold et al., 2017] • Relaxation Induced Neighborhood Search (RINS) [Danna et al., 2005] • Local Branching [Fischetti and Lodi, 2003] • Crossover, Mutation [Rothberg, 2007] • … Gregor Hendel – SCIP’s Adaptive Primal Heuristics 9/32 Famous LNS Heuristics

  14. • Relaxation Induced Neighborhood Search (RINS) [Danna et al., 2005] • Local Branching [Fischetti and Lodi, 2003] • Crossover, Mutation [Rothberg, 2007] • Proximity [Fischetti and Monaci, 2014] • Zeroobjective [in SCIP, Gurobi, XPress,…] • Analytic Center Search [Berthold et al., 2017] • … Gregor Hendel – SCIP’s Adaptive Primal Heuristics 9/32 Famous LNS Heuristics • RENS [Berthold, 2014] • DINS [Ghosh, 2007]

  15. Introduction Multi-Armed Bandit Selection

  16. • stochastic i.i.d. rewards for each action over time • adversarial an opponent tries to maximize the player’s regret. Two main scenarios: Literature: [Bubeck and Cesa-Bianchi, 2012] Gregor Hendel – SCIP’s Adaptive Primal Heuristics 10/32 The Multi-Armed Bandit Problem • Discrete time steps t = 1 , 2 , . . . • Finite set of actions H 1. Choose h t ∈ H 2. Observe reward r ( h t , t ) ∈ [ 0 , 1 ] 3. Goal: Maximize ∑ t r ( h t , t )

  17. • adversarial an opponent tries to maximize the player’s regret. Two main scenarios: Literature: [Bubeck and Cesa-Bianchi, 2012] Gregor Hendel – SCIP’s Adaptive Primal Heuristics 10/32 The Multi-Armed Bandit Problem • Discrete time steps t = 1 , 2 , . . . • Finite set of actions H 1. Choose h t ∈ H 2. Observe reward r ( h t , t ) ∈ [ 0 , 1 ] 3. Goal: Maximize ∑ t r ( h t , t ) • stochastic i.i.d. rewards for each action over time

  18. Literature: [Bubeck and Cesa-Bianchi, 2012] Two main scenarios: Gregor Hendel – SCIP’s Adaptive Primal Heuristics 10/32 The Multi-Armed Bandit Problem • Discrete time steps t = 1 , 2 , . . . • Finite set of actions H 1. Choose h t ∈ H 2. Observe reward r ( h t , t ) ∈ [ 0 , 1 ] 3. Goal: Maximize ∑ t r ( h t , t ) • stochastic i.i.d. rewards for each action over time • adversarial an opponent tries to maximize the player’s regret.

  19. Upper Confidence Bound (UCB) r h t T h t Exp.3 p h t 1 if t , H t if t 11/32 t w h t h w h t 1 Individual parameters 0 can be calibrated to the problem at hand. Gregor Hendel – SCIP’s Adaptive Primal Heuristics 1 1 1 1 h h t and Bandit Algorithms ¯ Let T h ( t ) = ∑ r h ( t ) = ∑ 1 h = h t r h , t 1 h = h t T h ( t ) t ′ ≤ t t ′ ≤ t ε -greedy √ |H| Select heuristic at random with probability ε t = ε t , otherwise use best.

  20. Exp.3 11/32 Gregor Hendel – SCIP’s Adaptive Primal Heuristics 0 can be calibrated to the problem at hand. and Individual parameters 1 1 t w h h w h t 1 p h t Bandit Algorithms ¯ Let T h ( t ) = ∑ r h ( t ) = ∑ 1 h = h t r h , t 1 h = h t T h ( t ) t ′ ≤ t t ′ ≤ t ε -greedy √ |H| Select heuristic at random with probability ε t = ε t , otherwise use best. Upper Confidence Bound (UCB) { √ }  α ln( 1 + t ) ¯ argmax r h ( t − 1 ) + if t > |H| ,  T h ( t − 1 ) h t ∈ h ∈H { H t } if t ≤ |H| . 

  21. 11/32 1 Gregor Hendel – SCIP’s Adaptive Primal Heuristics 0 can be calibrated to the problem at hand. and Individual parameters 1 Bandit Algorithms ¯ Let T h ( t ) = ∑ r h ( t ) = ∑ 1 h = h t r h , t 1 h = h t T h ( t ) t ′ ≤ t t ′ ≤ t ε -greedy √ |H| Select heuristic at random with probability ε t = ε t , otherwise use best. Upper Confidence Bound (UCB) { √ }  α ln( 1 + t ) ¯ argmax r h ( t − 1 ) + if t > |H| ,  T h ( t − 1 ) h t ∈ h ∈H { H t } if t ≤ |H| .  Exp.3 exp( w h , t ) p h , t = ( 1 − γ ) · h ′ exp( w h ′ , t ) + γ · ∑ |H|

  22. 11/32 1 Gregor Hendel – SCIP’s Adaptive Primal Heuristics 1 and Bandit Algorithms ¯ Let T h ( t ) = ∑ r h ( t ) = ∑ 1 h = h t r h , t 1 h = h t T h ( t ) t ′ ≤ t t ′ ≤ t ε -greedy √ |H| Select heuristic at random with probability ε t = ε t , otherwise use best. Upper Confidence Bound (UCB) { √ }  α ln( 1 + t ) ¯ argmax r h ( t − 1 ) + if t > |H| ,  T h ( t − 1 ) h t ∈ h ∈H { H t } if t ≤ |H| .  Exp.3 exp( w h , t ) p h , t = ( 1 − γ ) · h ′ exp( w h ′ , t ) + γ · ∑ |H| Individual parameters α, ε, γ ≥ 0 can be calibrated to the problem at hand.

  23. SCIP’s Adaptive LNS

  24. • controls 8 neighborhoods • further algorithmic steps: generic fixings, adaptive fixing rate • released with SCIP 5.0, improved in SCIP 6.0 Gregor Hendel – SCIP’s Adaptive Primal Heuristics 12/32 Adaptive Large Neighborhood Search • new primal heuristic plugin heur_alns.c • neighborhoods are bandit-selected based on their reward

  25. SCIP’s Adaptive LNS Reward Function for LNS

  26. r gap r sol Solution Reward r sol h t t Gap Reward r fail r gap h t t Failure Penalty r fail h t t h t t n h t 13/32 1 1 scaling (opt.) 2 2 1 Default settings in ALNS: 1 0 8 2 0 5 Gregor Hendel – SCIP’s Adaptive Primal Heuristics 1 1 r alns n lim x new if x old 1 c dual c T x old c T x new c T x old , else 0 x new , if x old 1 Rewarding Neighborhoods Goal A suitable reward function r alns ( h t , t ) ∈ [ 0 , 1 ]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend