the monge amp ere equation novel forms and numerical
play

THE MONGE-AMP` ERE EQUATION: NOVEL FORMS AND NUMERICAL SOLUTION - PowerPoint PPT Presentation

THE MONGE-AMP` ERE EQUATION: NOVEL FORMS AND NUMERICAL SOLUTION V.A. Zheligovsky (vlad@mitp.ru) , O.M. Podvigina International Institute of Earthquake Prediction Theory and Mathematical Geophysics, 84/32 Profsoyuznaya St., Moscow, Russian


  1. THE MONGE-AMP` ERE EQUATION: NOVEL FORMS AND NUMERICAL SOLUTION V.A. Zheligovsky (vlad@mitp.ru) , O.M. Podvigina International Institute of Earthquake Prediction Theory and Mathematical Geophysics, 84/32 Profsoyuznaya St., Moscow, Russian Federation ; U. Frisch Observatoire de la Cˆ ote d’Azur, U.M.R. 6529, BP 4229, 06304 Nice Cedex 4, France Zheligovsky V., Podvigina O., Frisch U. The Monge–Amp` ere equation: various forms and numerical methods. J. Computational Physics , 229 , 2010, 5043-5061 [http://arxiv.org/abs/0910.1301]

  2. Monge-Amp` ere equation: det � u x i ,x j � = f ( x ) • The “2nd order divergence” form • The Fourier integral form • The convolution integral form • A test problem with a cosmological flavour • Numerical solution: – Fixed point algorithm for the regular part of the MAE – Algorithm with continuation in a parameter and discrepancy minimisation – Algorithm with improvement of convexity and discrepancy minimisation • Results of solution of the test problem

  3. Existence and regularity of solutions to the MAE: • A.V. Pogorelov. The Minkowski multidimensional problem. Nauka, Moscow, 1975. (Geometric approach, convexity.) • I.J. Bakelman. Convex analysis and nonlinear geometric elliptic equations. Springer-Verlag, 1994. • L.A. Caffarelli, X. Cabr´ e. Fully nonlinear elliptic equations. American Mathematical Society colloquium publications, vol. 43. Amer. Math. Soc., Providence, Rhode Island, 1995. (The PDE approach, viscous solutions.) Methods for discrete optimal transportation problem: ask Andrei Sobolevsky. Numerical algorithms linked to the geometric interpretation of the MAE:   2 • V.I. Oliker, L.D. Prussner. On the numerical solution of the equation ∂ 2 z ∂ 2 z  ∂ 2 z ∂y 2 −  = f ∂x 2 ∂x∂y and its discretizations, I. Numerische Mathematik, 54 (1988) 271–293. (A mesh comprised of 25 points.) • D. Michaelis, S. Kudaev, R. Steinkopf, A. Gebhardt, P. Schreiber, A. Br¨ auer. Incoherent beam shaping with freeform mirror. Nonimaging optics and efficient illumination systems V. Eds. R. Winston, R.J. Koshel. Proc. of SPIE, vol. 7059 (2008) 705905. (A 55 × 55 mesh, 15 min. of a Pentium 4.)

  4. Application of algorithms for saddle-point optimisation to the two-dimensional MAE: • J.-D. Benamou, Y. Brenier. A computational fluid mechanics solution to the Monge– Kantorovich mass transfer problem. Numerische Mathematik, 84 (2000) 375–393. • E.J. Dean, R. Glowinski. Numerical solution of the two-dimensional elliptic Monge–Amp` ere equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Acad. Sci. Paris, Ser. I, 336 (2003) 779–784. Various numerical approaches: • E.J. Dean, R. Glowinski. Numerical solution of the two-dimensional elliptic Monge–Amp` ere equation with Dirichlet boundary conditions: a least-squares approach. C. R. Acad. Sci. Paris, Ser. I, 339 (2004) 887–892. • E.J. Dean, R. Glowinski. Numerical methods for fully nonlinear elliptic equations of the Monge–Amp` ere type. Comput. Methods Appl. Mech. Engrg. 195 (2006) 1344–1386. • X. Feng, M. Neilan. Galerkin methods for the fully nonlinear Monge–Amp` ere equation (arXiv:0712.1240) . • X. Feng, M. Neilan. Mixed finite element methods for the fully nonlinear Monge–Amp` ere equation based on the vanishing moment method (arXiv:0712.1241) . • G. Loeper, F. Rapetti. Numerical solution of the Monge–Amp` ere equation by a Newton’s algorithm. C. R. Acad. Sci. Paris, Ser. I, 340 (2005) 319–324. (A pseudospectral Newton’s algorithm.)

  5. • J.-D. Benamou, B.D. Froese, A.M. Oberman. Two numerical methods for the elliptic Mon- ge–Amp` ere equation. Preprint, 2009 [www.divbyzero.ca/froese/w/images/4/40/MA.pdf] . � u = ∇ − 2 u 2 x 1 x 1 + u 2 x 2 x 2 + 2 u 2 x 1 x 2 + 2 f An iterative Newton–Krylov solver with preconditioning (finite differences, modest accuracy required, discrepancies the order of 10 − 3 − 10 − 4 acceptable): • G.L. Delzanno, L. Chac´ on, J.M. Finn, Y. Chung, G. Lapenta. An optimal robust equidis- tribution method for two-dimensional grid adaptation based on Monge–Kantorovich opti- mization. J. Comput. Physics, 227 (2008) 9841–9864. ( 256 × 256 grid, contrast ratio = 8886 , discrepancy= 7 . 78 × 10 − 5 , 70 s. of a 2.4 GHz Intel Xeon processor.) • J.M. Finn, G.L. Delzanno, L. Chacon. Grid generation and adaptation by Monge–Kantoro- vich optimization in two and three dimensions. Proceedings of the 17th International Meshing Roundtable (2008) 551–568.

  6. The “2nd order divergence” form � u ( ω ) e i ω · x d ω . A Fourier integral solution in R N : u = R N � det � a ij � ≡ 1 N � � ε i 1 ...i N ε j 1 ...j N a i n j n ( ε p 1 ...p N is the unit antisymmetric tensor of rank N ) N ! i 1 ,...,iN , n =1 j 1 ,...,jN det � u x i x j � = ( − 1) N � N � � u ( ω ) ω i n ω j n e i ω · x d ω ⇒ ε i 1 ...i N ε j 1 ...j N R N � N ! n =1 i 1 ,...,iN , j 1 ,...,jN     = ( − 1) N � � N N � � � � ω n ω n R N ...  ε i 1 ...i N   ε j 1 ...j N  i n j n N ! R N i 1 ,...,i N n =1 j 1 ,...,j N n =1     N N � � ω n · x u ( ω n )  exp  d ω 1 ... d ω N ×   i � n =1 n =1 � � � � = ( − 1) N � � N − 1 � � � R N det 2 � ω 1 , ..., ω N − 1 , ω − ω n R N ... � � � � N ! � n =1     N − 1 N − 1 � �  e i ω · x d ω 1 ... d ω N − 1 d ω u ( ω n ) ω n ×   � u  ω − � n =1 n =1 � � ω 1 , ..., ω N � � � � is the N × N matrix comprised of columnar vectors ω 1 , ..., ω N ) (

  7.     = ( − 1) N � � N − 1 N − 1 R N det 2 � � � � � � � ω 1 , ..., ω N − 1 u ( ω n ) ω n  e i ω · x d ω 1 ... d ω N − 1 d ω . R N ... , ω   � u  ω − � � N ! n =1 n =1 “Reverse engineering” yields the “second-order divergence” form of the MAE in R N : � � 1 � ε i 1 ... i N ε j 1 ... j N u x i 1 x j 1 ... u x iN − 1 x jN − 1 u = f. N ! x iN x jN i 1 ,...,i N ,j 1 ,...,j N If u is space-periodic, and φ is a smooth function with a finite support, 1 � � � ε i 1 ... i N ε j 1 ... j N R N u x i 1 x j 1 ... u x iN − 1 x jN − 1 u φ x iN x jN d x = R 3 fφ d x . N ! i 1 ,...,iN , j 1 ,...,jN ∀ u ∈ W 2 N − 1 ( T N ) the integrals are ::::::::::::::::: well-defined :::: (by the Sobolev embedding theorem, ∇ u ∈ L 2( N − 1) ( T N ) ⇒ u ∈ L ∞ ( T N ) ). By contrast, integrals in the similar identity obtained by one integration by parts well-defined for u ∈ W 2 N − 1 ( T N ). are ::::: not :::: :::::::::::::::::

  8. The Fourier integral form of the MAE � For a space-periodic solution, 0 = T 3 f d x . To accommodate f > 0 (of interest in cosmology), let u = c 2 | x | 2 + u � , � u � � = 0 . � 1 �·� denotes the average: � f � = lim [ − L,L ] 3 f ( x ) d x . (2 L ) 3 L →∞ c N = � f � ; f/c N = f ( ω ) e i ω · x d ω . � � R N ∇ 2 u � = � ϕ ( ω ) e i ω · x d ω , u � = � u � ( ω ) e i ω · x d ω � R N � R N u � ( ω ) = − � ϕ ( ω ) / | ω | 2 . ⇒ �

  9. � � � � x i x j � = 1 � � R N det 2 det � u � R N ... � � i ω 1 , ..., i ω N − 1 , i ω − � N − 1 � � n =1 ω n N !     N − 1 N − 1 � �  e i ω · x d ω 1 ... d ω N − 1 d ω ϕ ( ω n ) ω n ×   � ϕ  ω − � n =1 n =1 ( i a is a unit vector in the direction of a ). Consider the term of order m < N in u � :   ( − 1) m � � � � � u � ( ω ) ω i n ω j n e i ω · x d ω ε i 1 ...i N ε j 1 ...j N   δ i n j n R N � N ! i 1 ,...,i N ,j 1 ,...,j N | σ | = m n : i n ,j n ∈ σ n : i n or j n ∈ /σ � (the sum | σ | = m is over all subsets σ ⊂ { 1 , ..., N } of cardinality m ; δ i n j n is the Kronecker symbol)   2 = ( − 1) m � � m � � � ω n R N ...  ε j 1 ...j m p 1 ...p N − m  j n m ! R N 1 ≤ p 1 <...<p N − m ≤ N j 1 ,...,j m n =1     m m � � ω n · x  exp  d ω 1 ... d ω m u � ( ω n ) ×  i  � n =1 n =1 � � � � = R N ... R N A m i ω 1 , ..., i ω m − 1 , i ω − � m − 1 n =1 ω n     m − 1 m − 1 � �  e i ω · x d ω 1 ... d ω m − 1 d ω , ϕ ( ω n ) ω n ×   � ϕ  ω − � n =1 n =1

  10. A m ( i 1 , ..., i m ) ≡ 1 � M 2 p 1 ...p N − m ( i 1 , ..., i m ) where m ! 1 ≤ p 1 <...<p N − m ≤ N is the sum of squares of all minors of rank m , � M p 1 ...p N − m ( i 1 , ..., i m ) ≡ ε j 1 ...j m p 1 ...p N − m ( i 1 ) j 1 ... ( i m ) j m , j 1 ,...,j m obtained by crossing out rows of numbers p 1 < ... < p N − m from the N × m matrix � i 1 , ..., i m � � � � M m ≡ � , comprised of m columnar vectors i 1 , ..., i m . The Fourier integral form of the MAE: � � � � N � ϕ ( ω ) + R N ... R N A m i ω 1 , ..., i ω m − 1 , i ω − � m − 1 � n =1 ω n m =2     m − 1 m − 1 � �  d ω 1 ... d ω m − 1 = � ϕ ( ω n ) ω n ×   � ϕ  ω − f ( ω ) , ∀ ω � = 0 . � n =1 n =1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend