properties of spherical fibonacci points
play

Properties of Spherical Fibonacci Points. Johann S. Brauchart - PowerPoint PPT Presentation

Properties of Spherical Fibonacci Points. Johann S. Brauchart j.brauchart@tugraz.at 22. April 2017 OPTIMAL POINT CONFIGURATIONS AND ORTHOGONAL POLYNOMIALS 2017, CIEM CASTRO URDIALES E XPLICIT P OINT S ET C ONSTRUCTION F IBONACCI L ATTICE P


  1. Properties of Spherical Fibonacci Points. Johann S. Brauchart j.brauchart@tugraz.at 22. April 2017 OPTIMAL POINT CONFIGURATIONS AND ORTHOGONAL POLYNOMIALS 2017, CIEM CASTRO URDIALES

  2. E XPLICIT P OINT S ET C ONSTRUCTION

  3. F IBONACCI L ATTICE P OINTS IN THE S QUARE [ 0 , 1 ] 2

  4. Fibonacci sequence (OEIS: A000045): F 0 := 0 , F 1 := 1 , F 2 := 1 , F n + 1 := F n + F n − 1 , n ≥ 1 . Fibonacci lattice in [ 0 , 1 ] 2 � k � �� k F n − 1 F n : , , 0 ≤ k < F n . F n F n { x } is fractional part of real x .

  5. 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 n = 14: F n = 377.

  6. 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 n = 15: F n = 610.

  7. Fibonacci Quart. 8 1970 no. 2, 185–198.

  8. L ∞ Discrepancy of Fibonacci Lattice Point Sets √ Golden Ratio : φ = 1 + 5 . 2 F n − 1 / F n is n th convergent of 1 φ − 1 = 0 + . 1 1 + 1 + ... So � D ( F n ; · ) � ∞ ≍ n ≍ log N .

  9. L 2 Discrepancy of sym. Fibonacci Lattice Point Sets

  10. Theorem (Bilyk, Temlyakov, & Yu, 2012) 2 = 1 8 S n + 17 36 + c n ; · ) � 2 � D ( F ′ F 2 n ≍ n 1 / 2 ≍ ( log F n ) 1 / 2 , where c depends on parity of F n and F n − 1 � S n := 1 1 � 2 . � � 2 � F 2 sin π kF n − 1 sin π k n k = 1 F n F n . . . requires O ( F n ) steps for computation (vs. O ( F n log F n ) via Warnock’s formula).

  11. S PHERICAL F IBONACCI L ATTICE P OINTS

  12. Area preserving Lambert transformation Φ : [ 0 , 1 ] 2 → S 2  �   2 cos ( 2 π y ) x − x 2 �  Φ ( x , y ) = x − x 2 2 sin ( 2 π y ) 1 − 2 x

  13. Illumination Integrals

  14. P ROPERTIES

  15. N UMERICAL I NTEGRATION VIA Quasi Monte Carlo (QMC) methods � N � S d f d σ d ≈ 1 f ( x j ) . N j = 1

  16. Rationale Good properties of f are preserved by not making a change of variables. Costs: finding of “good” node sets.

  17. Uniform distribution on S d Definition ( X N ) is asymptotically uniformly distributed on S d if # { k : x k , N ∈ B } lim = σ d ( B ) N N →∞ for every Riemann-measurable set B in S d . Quantification Informally: A reasonable set gets a fair share of points as N becomes large. Equivalent definition ( X N ) is asymptotically uniformly distributed on S d if � N � 1 lim f ( x k ) = S d f d σ d N N →∞ k = 1 for every f ∈ C ( S d ) . Quantification

  18. S PHERICAL D ESIGNS

  19. Definition (Delsarte, Goethals and Seidel, 1977) Spherical t -designs { x 1 , . . . , x N } ⊂ S d satisfy � N � S d P ( x ) d σ d ( x ) = 1 P ( x j ) N j = 1 for all polynomials P with deg P ≤ t . Theorem ( Bondarenko, Radchenko and Viazovska, 2013 ) There exists c d such that: for every N ≥ c d t d there is a spherical t-design with N points.

  20. A sequence ( Z ∗ N t ) of spherical t -designs with N t points of exactly the optimal order ( N t ≍ t d ) of points has the remarkable property that � � � � � ≤ c s N − s / d � Q [ Z N ∗ t ]( f ) − I ( f ) � f � H s t for all f ∈ H s ( S d ) and all s > d 2 . The order of N t cannot be improved.

  21. O PTIMAL NODE SETS

  22. The reproducing kernel Hilbert space approach provides an elegant and powerful method to compute the worst-case error of a QMC rule for functions from the unit ball in a Sobolev space H s ( S d ) , s > d 2 ; i.e., for f ∈ H s , Q [ X N ]( f ) − I ( f ) � � N � f , 1 = K ( x , x j ) − I ( K ( x , · )) H s , N j = 1 � �� � R [ X N ]( x ) where K is a reproducing kernel for H s and R [ X N ] the “representer” of the error.

  23. In particular, the distance kernel K ( x , y ) := 1 − c d | x − y | yields an invariance principle for the WCE, N � � � 2 1 | x j − x k | + 1 wce ( Q [ X N ] , K ) N 2 c d j , k = 1 � � = S d | x − y | d σ d ( x ) σ d ( y ) , S d named after Stolarsky (JSB-Dick, 2013 ). � 1 � Proof exploits K ( x , y ) = S d 1 C ( x , t ) ( z ) 1 C ( y , t ) ( z ) d σ d ( z ) d t . − 1

  24. A sequence ( X ∗ N ) of maximal sum-of-distance N -point sets define QMC rules that satisfy | Q [ X N ∗ ]( f ) − I ( f ) | ≤ c s ′ N − s ′ / d � f � H s ′ 2 < s ′ ≤ d + 1 for all f ∈ H s ′ ( S d ) and all d 2 . ∗ The order of N cannot be improved. ∗ Open: Determine strength of ( X ∗ N ) .

  25. DPPs and Worst-case Errors Masatake Hiraro (Aichi Prefectural University) (MCQMC 2016 at Standford): N -point spherical ensembles on S 2 yield average WCE of order N − s / 2 , 1 < s < 2; also results for harmonic ensembles on S d ;

  26. Spherical Fibonacci Points — see Discrepancy results

  27. L OW - DISCREPANCY SEQUENCES ON THE SPHERE

  28. � Motivated by classical (up to log N optimal) results of J. Beck ( 1984), a sequence ( X N ) is of low-discrepancy if � log N � D ( X N , · ) � ∞ ≤ c 1 N 1 / 2 + 1 / ( 2 d ) . Unresolved Question: Unlike in the unit cube case, there are no known explicit low-discrepancy constructions on the sphere.

  29. Spherical cap L ∞ Discrepancy Spherical cap L ∞ -discrepancy � � � | Z N ∩ C | � � D C L ∞ ( Z N ) := sup − σ d ( C ) � N C Corollary (Aistleitner-JSB-Dick, 2012 ) �� √ D C L ∞ ( Z F m ) ≤ 44 8 F m and numerical evidence that for some 1 2 ≤ c ≤ 1 , L ∞ ( Z F m ) = O (( log F m ) c F − 3 / 4 D C ) as F m → ∞ . m RMK: A. Lubotzky, R. Phillips and P . Sarnak (1985, 1987) ) ≪ ( log N ) 2 / 3 N − 1 / 3 with numerical have D C L ∞ ( X LPS N evidence indicating O ( N − 1 / 2 ) .

  30. ln-ln plot of spherical cap L ∞ -discrepancy of point set families.

  31. Should be compared with . . . Theorem (Aistleitner-JSB-Dick, 2012) � � c C D C N 1 / 2 ≤ E L ∞ ( X N ) ≤ N 1 / 2 . Coulomb Surprisingly: Random Theorem (Götz, 2000) c N ) ≤ C log N N 1 / 2 ≤ D C L ∞ ( X ∗ N 1 / 2 , X ∗ N minimizing the Coulomb potential energy N N � � 1 | x j − x k | . j = 1 k = 1 j � = k

  32. Spherical Cap L 2 Discrepancy Let D ( X N , C ) := | X N ∩ C | − σ d ( C ) be the local N discrepancy function w.r.t. spherical caps C . The L 2 -discrepancy � D ( X N , · ) � 2 satisfies N � 1 | x j − x k | + 1 � D ( X N , · ) � 2 2 N 2 c d j , k = 1 � � = S d | x − y | d σ d ( x ) σ d ( y ) , S d an invariance principle first shown by Stolarsky ( 1973; JSB-Dick, 2013;); i.e., maximizers of the sum of distances have optimal � D ( X N , · ) � 2 . † † The precise large N behavior is closely related to minimal Riesz energy asymptotics (JSB, 2011).

  33. Optimal Spherical Cap L 2 Discrepancy Conjecture (B, 2011 ) L 2 ( X N ) ∼ A 2 N − 3 / 4 + · · · D C as N → ∞ , where � � 8 π � 1 / 2 3 √ A 2 = [ − ζ ( − 1 / 2 )] L − 3 ( − 1 / 2 ) 2 3 = 0 . 44679 . . . .

  34. Spherical Cap L 2 -discrepancy (B–Dick, work in progress) Fn − 1 � 2 4 1 � DC � � � 4 L 2 ( Z n ) = − � z j − z k � � F 2 � 3 n j , k = 0 � 2 � 2 � � F − 3 / 2 4 F 3 / 2 DC DC n Fn 4 ( Z n ) ( Z n ) n n L 2 L 2 3 2 6.2622e-01 3.5355e-01 1.7712 4 3 3.2188e-01 1.9245e-01 1.6725 5 5 1.2865e-01 8.9442e-02 1.4384 6 8 5.7129e-02 4.4194e-02 1.2926 7 13 2.4622e-02 2.1334e-02 1.1540 8 21 1.1107e-02 1.0391e-02 1.0688 9 34 5.0965e-03 5.0440e-03 1.0103 10 55 2.3683e-03 2.4516e-03 0.9660 11 89 1.1064e-03 1.1910e-03 0.9289 12 144 5.2192e-04 5.7870e-04 0.9018 13 233 2.4792e-04 2.8116e-04 0.8817 14 377 1.1837e-04 1.3661e-04 0.8665 15 610 5.6680e-05 6.6375e-05 0.8539 16 987 2.7240e-05 3.2249e-05 0.8446 17 1597 1.3119e-05 1.5669e-05 0.8372 18 2584 6.3331e-06 7.6130e-06 0.8318 19 4181 3.0598e-06 3.6989e-06 0.8272 20 6765 1.4808e-06 1.7972e-06 0.8239 21 10946 7.1699e-07 8.7320e-07 0.8211 22 17711 3.4756e-07 4.2426e-07 0.8192 23 28657 1.6848e-07 2.0613e-07 0.8173 24 46368 8.1756e-08 1.0015e-07 0.8162 25 75025 3.9663e-08 4.8662e-08 0.8150 26 121393 1.9257e-08 2.3643e-08 0.8145 27 196418 9.3470e-09 1.1487e-08 0.8136 28 317811 4.5399e-09 5.5814e-09 0.8133 29 514229 2.2041e-09 2.7118e-09 0.8128 30 832040 1.0708e-09 1.3176e-09 0.8127 31 1346269 5.1999e-10 6.4018e-10 0.8122 0.7985 cf. B [Uniform Distribution Theory 6 :2 (2011)]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend