short range operator contributions to 0 decay from lqcd
play

Short Range Operator Contributions to 0 decay from LQCD Henry - PowerPoint PPT Presentation

Short Range Operator Contributions to 0 decay from LQCD Henry Monge-Camacho 1 , 2 1 College of William & and Mary 2 LBNL 36th International Symposium on Lattice Field Theory July 24, 2018 Henry Monge-Camacho (W&M, LBNL) July 24,


  1. Short Range Operator Contributions to 0 νββ decay from LQCD Henry Monge-Camacho 1 , 2 1 College of William & and Mary 2 LBNL 36th International Symposium on Lattice Field Theory July 24, 2018 Henry Monge-Camacho (W&M, LBNL) July 24, 2018 1 / 14

  2. Motivation ν ν ¯ ? Henry Monge-Camacho (W&M, LBNL) July 24, 2018 2 / 14

  3. Motivation η ββ 0 νββ Half life Light neutrino Heavy neutrino T 1 / 2 = G ( Q ββ , Z ) | M | 2 η ββ 1 � U el m l � U eh / m h 1 m N m e Experiments focused on 0 + → 0 + B. C. Tiburzi, M. L. Wagman, F. Winter, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, M. J. Savage, and P. E. Shanahan (2017). In: Phys. Rev. D96.5, p. 054505. arXiv: 1702.02929 [hep-lat] Henry Monge-Camacho (W&M, LBNL) July 24, 2018 3 / 14

  4. Contributing Diagrams G. Prezeau, M. Ramsey-Musolf, and P. Vogel (2003). In: Phys. Rev. D68, p. 034016. arXiv: hep-ph/0303205 [hep-ph] used Effective Field Theory to Integrate out heavy modes and obtain the contributing operators are found to be: Henry Monge-Camacho (W&M, LBNL) July 24, 2018 4 / 14

  5. Contributing Diagrams G. Prezeau, M. Ramsey-Musolf, and P. Vogel (2003). In: Phys. Rev. D68, p. 034016. arXiv: hep-ph/0303205 [hep-ph] used Effective Field Theory to Integrate out heavy modes and obtain the contributing operators are found to be: Henry Monge-Camacho (W&M, LBNL) July 24, 2018 4 / 14

  6. Contributing Diagrams G. Prezeau, M. Ramsey-Musolf, and P. Vogel (2003). In: Phys. Rev. D68, p. 034016. arXiv: hep-ph/0303205 [hep-ph] used Effective Field Theory to Integrate out heavy modes and obtain the contributing operatorsare found to be: Decay Operators q L τ + γ µ q L )( ¯ q R τ + γ µ q R ) O ++ 1 + = ( ¯ O ++ q R τ + q L ) ( ¯ q R τ + q L ) + ( ¯ q L τ + q R )( ¯ q L τ + q R ) 2 ± = ( ¯ O ++ q L τ + q L )( ¯ q L τ + q L ) + ( ¯ q R τ + q R )( ¯ q R τ + q R ) 3 ± = ( ¯ q L τ + γ µ q L ∓ ¯ q R τ + γ µ q R )( ¯ O ++ q L τ + q R − ¯ q R τ + q L ) 4 ± = ( ¯ q L τ + γ µ q L ± ¯ q R τ + γ µ q R )( ¯ O ++ q L τ + q R + ¯ q R τ + q L ) 5 ± = ( ¯ Henry Monge-Camacho (W&M, LBNL) July 24, 2018 4 / 14

  7. π − → π + Matrix Element The operators contributing to π − → π + process are O ++ 1 + , O ++ 2 + O ++ 3 + and O ′ ++ 1 + , O ′ ++ 2 + (color mixed). The corresponding 3-point correlation functions are computed as follows: Henry Monge-Camacho (W&M, LBNL) July 24, 2018 5 / 14

  8. π − → π + Matrix Element The operators contributing to π − → π + process are O ++ 1 + , O ++ 2 + O ++ 3 + and O ′ ++ 1 + , O ′ ++ 2 + (color mixed). The corresponding 3-point correlation functions are computed as follows: π ´ t 0 t i ¯ d γ 5 u � Henry Monge-Camacho (W&M, LBNL) July 24, 2018 5 / 14

  9. π − → π + Matrix Element The operators contributing to π − → π + process are O ++ 1 + , O ++ 2 + O ++ 3 + and O ′ ++ 1 + , O ′ ++ 2 + (color mixed). The corresponding 3-point correlation functions are computed as follows: π ` π ´ t f t 0 t i � ¯ d γ 5 u ¯ d γ 5 u � Henry Monge-Camacho (W&M, LBNL) July 24, 2018 5 / 14

  10. π − → π + Matrix Element The operators contributing to π − → π + process are O ++ 1 + , O ++ 2 + O ++ 3 + and O ′ ++ 1 + , O ′ ++ 2 + (color mixed). The corresponding 3-point correlation functions are computed as follows: π ` π ´ O t f t 0 t i � ¯ u Γ 1 d ¯ u Γ 2 d | d γ 5 u ¯ d γ 5 u � | ¯ Henry Monge-Camacho (W&M, LBNL) July 24, 2018 5 / 14

  11. π − → π + A. Nicholson et al. (2018). In: arXiv: 1805.02634 [nucl-th] R i ( t ) = a 4 � π | O ++ i + | π � + R e . s . ( t ) ( a 2 Z π 0 ) 3 Henry Monge-Camacho (W&M, LBNL) July 24, 2018 6 / 14

  12. π − → π + Results These matrix elements become inputs for nucleon potentials. For example: g 2 σ 1 · q σ 2 · q V nn → pp τ + 1 τ + A ( | q | ) = − O i ( | q | 2 + m 2 i 2 4 F 2 π ) 2 π Henry Monge-Camacho (W&M, LBNL) July 24, 2018 7 / 14

  13. Non-perturbative Renormalization A. Nicholson et al. (2018). In: arXiv: 1805.02634 [nucl-th] C. C. Chang et al. (2018). In: Nature 558.7708, pp. 91–94. arXiv: 1805.12130 [hep-lat] a15m310 : SMOM γ µ a15m310 : SMOM / q 1 . 2 a12m310 : SMOM γ µ a12m310 : SMOM / q a09m310 : SMOM γ µ 1 . 0 a09m310 : SMOM / q ( Z A /Z V − 1) × 10 3 0 . 8 0 . 6 0 . 4 0 . 2 0 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 µ [GeV] Method RI-SMOM: 1 Three Lattice spacings:0.09,0.12,0.15fm Projectors: γ and / q show agreement after MS conversion Step scaling functions are used to handle reduced renormalization windows (0.15) 1 C. Sturm, Y. Aoki, N. H. Christ, T. Izubuchi, C. T. C. Sachrajda, and A. Soni (2009). In: Phys. Rev. D80, p. 014501. arXiv: 0901.2599 [hep-ph] Henry Monge-Camacho (W&M, LBNL) July 24, 2018 8 / 14

  14. Renormalization Constants Running Renormalization Group ⇒ cont. running Σ ( µ 1 , µ 2 ) = Z ( µ 1 ) Z ( µ 2 ) − 1 In the Lattice: Σ ( µ 1 , µ 2 , a ) = Σ ( µ 1 , µ 2 ) cont + ∆ a 2 Fit assuming smooth µ dependence to obtain Σ ( µ 1 , µ 2 ) cont R. Arthur and P. A. Boyle (2011). In: Phys. Rev. D83, p. 114511. arXiv: 1006.0422 [hep-lat] Henry Monge-Camacho (W&M, LBNL) July 24, 2018 9 / 14

  15. Four-quark Feynman-Hellman Method: π − → π + Analog of method implemented for baryons and bilinear currents 2 � d 4 x ¯ ψΓ 1 ψ ¯ ψΓ 2 ψ ∂ λ E λ = � n | H λ | n � S λ = λ ∂ λ E λ For a meson effective mass: = − ∂ λ C ( t + τ ) + ∂ λ C ( t − τ ) − 2 cosh ( m eff τ ) ∂ λ C ( t ) ∂ m eff � � � 2 τ C ( t ) sinh ( m eff τ ) ∂ λ � λ = 0 � For long enough t ∂ m eff ≈ J 00 � � 2 E 2 ∂ λ � 0 λ = 0 ∂ λ C ( t ) Matrix element is pulled down with ∂ λ � � � d 4 x Ω | T O ( t ) J ( x ) O † ( 0 ) | Ω N ( t ) = 2 C. Bouchard, C. C. Chang, T. Kurth, K. Orginos, and A. Walker-Loud (2017). In: Phys. Rev. D96.1, p. 014504. arXiv: 1612.06963 [hep-lat] Henry Monge-Camacho (W&M, LBNL) July 24, 2018 10 / 14

  16. Lattice Implementation: Brute force calculation on small Lattice: δ ( y 0 − y ) Γ 1 � � π + π − Ω | T O ( t ) J ( x ) O † ( 0 ) | Ω � d 4 x = � y 0 ∈ V t 0 δ ( y 0 − y ) Γ 2 Hubbard-Stratanovich Transformation: � ∞ d 4 x ( ψΓψ ) 2 = α e − λ 2 � � d 4 x { σ 2 d σ e − 4 + λ i σ ( ψΓψ ) } − ∞ D. J. Gross and A. Neveu (1974). In: Phys. Rev. D10, p. 3235 R. L. Stratonovich (1957). In: Doklady Akad. Nauk S.S.S.R. 115, p. 1097,J. Hubbard (1959). In: Phys. Rev. Lett. 3, pp. 77–80 Henry Monge-Camacho (W&M, LBNL) July 24, 2018 11 / 14

  17. Lattice Implementation: Four-quark is recovered after σ integration: = � d σ Numerical implementation: � σ Γ 1 � � π + π − d 4 x Ω | T O ( t ) J ( x ) O † ( 0 ) | Ω � = t 0 � σ Γ 2 Henry Monge-Camacho (W&M, LBNL) July 24, 2018 12 / 14

  18. Conclusions and Future Work: Reproduce π − → π + calculation with the new method Implement calculation using the Hubbard-Stratanovich transformation Apply method to nn → pp calculation Henry Monge-Camacho (W&M, LBNL) July 24, 2018 13 / 14

  19. LBNL: Chia Cheng Chang, Andr´ e Walker-Loud, W&M and LLNL: David Brantley BNL: Enrico Rinaldi FZJ: Evan Berkowitz JLab: B´ alint J´ oo Liverpool Univ.: Nicolas Garron LLNL: Pavlos Vranas,Arjun Gambhir NERSC: Thorsten Kurth UNC: Amy Nicholson nVidia: Kate Clark Funded by: Nuclear Theory for Double-Beta Decay and Fundamental Symmetries (DBD Collaboration, DOE) Henry Monge-Camacho (W&M, LBNL) July 24, 2018 14 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend