discrete time approximation of bsdes with lipschitz
play

Discrete time approximation of BSDEs with Lipschitz coefficients B. - PowerPoint PPT Presentation

Discrete time approximation of BSDEs with Lipschitz coefficients B. Bouchard Ceremade, University Paris-Dauphine Joint works with: N. Touzi, R. Elie, J.-F. Chassagneux and S. Menozzi BSDEs and PDEs Semilinear parabolic PDEs: formal link


  1. Discrete time approximation of BSDEs with Lipschitz coefficients B. Bouchard Ceremade, University Paris-Dauphine Joint works with: N. Touzi, R. Elie, J.-F. Chassagneux and S. Menozzi

  2. BSDEs and PDEs

  3. Semilinear parabolic PDEs: formal link • The solution ( Y, Z ) of � T � T Y t = g ( X T ) + f ( X s , Y s , Z s ) ds − Z s dW s , t t is related to the solution u of −L u − f ( · , u, Duσ )=0 on [0 , T ) × R d , u ( T, · )= g on R d through “ Z t = Du ( t, X t ) σ ( X t ) ′′ Y t = u ( t, X t ) and ⇒ Two point of views : Solve the pde to approximate ( Y, Z ) / Solve the BSDE to approximate u . Remark: BSDEs can be defined in a non Markovian setting ⇒ non Marko- vian extension of PDEs.

  4. Numerical resolution: first approaches • Ma, Protter and Yong (94), Douglas, Ma and Protter (96), Ma, Protter, San Martin and Torres (02): Du ) and set ( Y π , Z π ) = (ˆ Duσ )( · , X π ). u, ˆ u, ˆ solve the PDE ⇒ (ˆ • Coquet, Mackevicius and Memin (98), Briand, Delyon and Memin (01), Antonelli and Kohatsu (00): approximate W by a discrete random walk (with values in a finite state- space) and solve the associated discrete time BSDE ( ∼ tree method). ⇒ Curse of dimensionality !

  5. Euler scheme approximation

  6. The forward process X • Fix a grid of [0 , T ]: π := { t i := hi, i ≤ n } with h = T/n . • Set X π 0 = X 0 • For i = 1 , . . . , n , set X π X π t i − 1 + b ( X π t i − 1 ) h + σ ( X π = t i − 1 )( W t i − W t i − 1 ) t i

  7. The forward process X • Fix a grid of [0 , T ]: π := { t i := hi, i ≤ n } with h = T/n . • Set X π 0 = X 0 • For i = 1 , . . . , n , set X π X π t i − 1 + b ( X π t i − 1 ) h + σ ( X π = t i − 1 )( W t i − W t i − 1 ) t i • Error: 1   2 1 | X t − X π t i | 2 2 . max sup i<n E ≤ Ch   t ∈ [ t i ,t i +1 ]

  8. The BSDE ( Y, Z ) : Adapted backward Euler scheme • For i = n − 1 , . . . , 0, write Y t i ∼ Y t i +1 + f ( X t i , Y t i , Z t i ) h − Z t i ( W t i +1 − W t i ) (1) � � and take E · | F t i to get � � Y t i ∼ E Y t i +1 | F t i + f ( X t i , Y t i , Z t i ) h

  9. The BSDE ( Y, Z ) : Adapted backward Euler scheme • For i = n − 1 , . . . , 0, write Y t i ∼ Y t i +1 + f ( X t i , Y t i , Z t i ) h − Z t i ( W t i +1 − W t i ) (2) � � and take E · | F t i to get � � Y t i ∼ E Y t i +1 | F t i + f ( X t i , Y t i , Z t i ) h multiply (2) by ( W t i +1 − W t i ) Y t i ( W t i +1 − W t i ) ∼ Y t i +1 ( W t i +1 − W t i ) + f ( X t i , Y t i , Z t i )( W t i +1 − W t i ) h − Z t i ( W t i +1 − W t i )( W t i +1 − W t i ) � � and take E · | F t i � � 0 Y t i +1 ( W t i +1 − W t i ) | F t i ∼ E − Z t i h

  10. The BSDE ( Y, Z ) : Adapted backward Euler scheme (2) • Recall: � � Y t i ∼ E Y t i +1 | F t i + f ( X t i , Y t i , Z t i ) h � � 0 ∼ E Y t i +1 ( W t i +1 − W t i ) | F t i − Z t i h

  11. The BSDE ( Y, Z ) : Adapted backward Euler scheme (2) • Recall: � � Y t i ∼ E Y t i +1 | F t i + f ( X t i , Y t i , Z t i ) h � � 0 ∼ E Y t i +1 ( W t i +1 − W t i ) | F t i − Z t i h • Set Y π T = g ( X π T ) and for i = n − 1 , . . . , 0 � � Y π Y π + f ( X π t i , Y π t i , Z π = E t i +1 | F t i t i ) h t i where � � Z π h − 1 E Y π = t i +1 ( W t i +1 − W t i ) | F t i t i

  12. The BSDE ( Y, Z ) : Adapted backward Euler scheme (2) • Recall: � � Y t i ∼ E Y t i +1 | F t i + f ( X t i , Y t i , Z t i ) h � � 0 ∼ E Y t i +1 ( W t i +1 − W t i ) | F t i − Z t i h • Set Y π T = g ( X π T ) and for i = n − 1 , . . . , 0 � � Y π Y π + f ( X π t i , Y π t i , Z π = E t i +1 | F t i t i ) h t i where � � Z π h − 1 E Y π = t i +1 ( W t i +1 − W t i ) | F t i t i • Could alternatively set � � � � Y π Y π f ( X π t i , Y π t i +1 , Z π = E t i +1 | F t i + E t i ) | F t i h t i

  13. Numerical implementation

  14. Quantization • Bally, Pages and Printems for the case f independent of Z . • Replace X π by a quantized version ˆ X π taking a finite number of possible values. X π . • Estimate the transition probabilities of ˆ Y π X π • Use the algorithm: ˆ T = g ( ˆ T ) and for i = n − 1 , . . . , 0 � � Y π Y π X π X π Y π ˆ ˆ t i +1 | ˆ + f ( ˆ t i , ˆ = E t i ) h t i t i

  15. Pure Monte-Carlo approaches • Simulate ( X π,j , W j , j ≤ N ) Y π,j = g ( X π,j • Set ˆ T ) T • Given ˆ E an approximation of E based on the simulated data, use the induction � � Y π,j t i +1 | X π,j + f ( X π,j Y π,j Z π,j Y π ˆ ˆ ˆ t i , ˆ , ˆ = t i ) h E t i t i t i � � Z π,j t i +1 ( W t i +1 − W t i ) | X π,j h − 1 ˆ Y π ˆ ˆ = E t i t i • Two alternatives : 1. Chevance (97), Longstaff and Schwartz (01), Clement, Lamberton and Protter (02), Gobet, Lemor and Warin (05): non-parametric regression. 2. Lions and Regnier (01), B., Ekeland and Touzi (04), B. and Touzi (04): Malliavin calculus approach to rewrite conditional expectations in terms of unconditional expectations.

  16. Approximation error

  17. Control of the approximation error • Say f ≡ 0, then � T � T Y t i = g ( X T ) + f ( X s , Y s , Z s ) ds − Z s dW s t i t i � t i +1 = Y t i +1 − Z s dW s t i implies � � = E Y t i Y t i +1 | F t i .

  18. Control of the approximation error • Say f ≡ 0, then � T � T Y t i = g ( X T ) + f ( X s , Y s , Z s ) ds − Z s dW s t i t i � t i +1 = Y t i +1 − Z s dW s t i implies � � = E Y t i Y t i +1 | F t i . Thus   � t i | 2 � � | Y t i +1 − Y t i | 2 � t i | 2 | Y t − Y π | Y t i +1 − Y π max sup ≥ max ≥ max i<n E i<n E i<n E   t ∈ [ t i ,t i +1 ]   | Y t − Y t i | 2  =: c R ( Y ) 2 ≥ c max sup i<n E  S 2 t ∈ [ t i ,t i +1 ] for some c > 0.

  19. Control of the approximation error (2) • Set �� t i +1 � Z t i := h − 1 E ˜ Z s ds | F t i t i then     � t i +1 � t i +1 � � � Z t − Z π t i � 2 dt Z t i � 2 dt  =: R ( Z ) 2  ≥ E � Z t − ˜ E H 2 t i t i i i

  20. Control of the approximation error (3) • Conclusion: up to a constant c > 0, the error 1 1     � t i +1 2 2 � t i | 2 t i � 2 dt | Y t − Y π � Z t − Z π Err( h ) := max sup + E i<n E    t i t ∈ [ t i ,t i +1 ] i is bounded from below by 1 1     � t i +1 2 2 � | Y t − Y t i | 2 Z t i � 2 dt � Z t − ˜ R ( Y ) S 2 + R ( Z ) H 2 = max sup + E i<n E    t i t ∈ [ t i ,t i +1 ] i

  21. Control of the approximation error (3) • Conclusion: up to a constant c > 0, the error 1 1     � t i +1 2 2 � t i | 2 t i � 2 dt | Y t − Y π � Z t − Z π Err( h ) := max sup + E i<n E    t i t ∈ [ t i ,t i +1 ] i is bounded from below by 1 1     � t i +1 2 2 � | Y t − Y t i | 2 Z t i � 2 dt � Z t − ˜ R ( Y ) S 2 + R ( Z ) H 2 = max sup + E i<n E    t i t ∈ [ t i ,t i +1 ] i • One can actually show that � � 1 Err( h ) = O R ( Y ) S 2 + R ( Z ) H 2 + h 2

  22. Control of the approximation error (4) • Thus � � 1 Err( h ) = O R ( Y ) S 2 + R ( Z ) H 2 + h 2 where (formally) R ( Y ) 2 | 2 ] S 2 = max i<n E [ sup | u ( t, X t ) − u ( t i , X t i ) � �� � t ∈ [ t i ,t i +1 ] � �� � Y t Y ti and � t i +1 �� t i +1 � � R ( Z ) 2 − h − 1 E � 2 dt ] H 2 = E [ � Duσ ( t, X t ) Duσ ( s, X s ) | F t i t i t i � �� � i Z t � �� � ˜ Z ti • The error depends on a very weak notion of regularity of ( u, Du ).

  23. Regularity results

  24. Semilinear PDEs • Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the coefficients are Lipschitz continuous. Then, 1 1 R ( Y ) S 2 + R ( Z ) H 2 = O ( h 2 ) and Err( h ) = O ( h 2 )

  25. Semilinear PDEs • Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the coefficients are Lipschitz continuous. Then, 1 1 R ( Y ) S 2 + R ( Z ) H 2 = O ( h 2 ) and Err( h ) = O ( h 2 ) u is 1 • Remark: 2 -H¨ older in t and Lipschitz in x by propagation of the Lipschitz continuity of the terminal condition g . 1 ⇒ Since Y t = u ( t, X t ), R ( Y ) S 2 = O ( h 2 ) corresponds to the fact that X 1 2 -H¨ older in t .

  26. Semilinear PDEs • Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the coefficients are Lipschitz continuous. Then, 1 1 R ( Y ) S 2 + R ( Z ) H 2 = O ( h 2 ) and Err( h ) = O ( h 2 ) • Elements of proof for R ( Z ) H 2 : (case f = 0, d = 1, smooth coefficients) Y t = u ( t, X t ) = E [ g ( X T ) | F t ] ∂ u ( t, X t )( ∂ X t ) − 1 σ ( X t ) Z t = Du ( t, X t ) σ ( X t ) = ∂X 0 ∂X 0

  27. Semilinear PDEs • Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the coefficients are Lipschitz continuous. Then, 1 1 R ( Y ) S 2 + R ( Z ) H 2 = O ( h 2 ) and Err( h ) = O ( h 2 ) • Elements of proof for R ( Z ) H 2 : (case f = 0, d = 1, smooth coefficients) Y t = u ( t, X t ) = E [ g ( X T ) | F t ] ∂ u ( t, X t )( ∂ X t ) − 1 σ ( X t ) Z t = Du ( t, X t ) σ ( X t ) = ∂X 0 ∂X 0 � � Dg ( X T ) ∂ ( ∂ X t ) − 1 σ ( X t ) = E X T | F t ∂X 0 ∂X 0 � �� � say=1 for simplicity

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend