a discrete time approximation for reflected bsdes related
play

A Discrete-time approximation for reflected BSDEs related to - PowerPoint PPT Presentation

Introduction A Discretization scheme for RBSDEs Convergence for the obliquely RBSDE A Discrete-time approximation for reflected BSDEs related to switching problem J-F Chassagneux (Universit e d Evry Val dEssonne) joint work


  1. Introduction A Discretization scheme for RBSDEs Convergence for the obliquely RBSDE A Discrete-time approximation for reflected BSDEs related to “switching problem” J-F Chassagneux ∗ (Universit´ e d’ Evry Val d’Essonne) joint work with R. Elie (P9) et I. Kharroubi (P9) New advances in BSDEs for financial engineering applications - Tamerza, October 28, 2010 (*) The research of the author benefited from the support of the ‘Chaire Risque de cr´ edit’, F´ ed´ eration Bancaire Fran¸ caise. J-F Chassagneux Approximation of obliquely reflected BSDEs

  2. Introduction A Discretization scheme for RBSDEs Convergence for the obliquely RBSDE Introduction Obliquely reflected BSDEs Example: Starting and stopping problem Representation using “switched” BSDEs A Discretization scheme for RBSDEs Approximation of the forward SDE Approximation of the RBSDE Stability issue Convergence for the obliquely RBSDE Discretizing the reflection Errors analysis Convergence results J-F Chassagneux Approximation of obliquely reflected BSDEs

  3. Introduction Obliquely reflected BSDEs A Discretization scheme for RBSDEs Example: Starting and stopping problem Convergence for the obliquely RBSDE Representation using “switched” BSDEs Reflected BSDEs ◮ For ( b , σ ) : R d → R d × M d Lipschitz ( σ may be degenerate) : � t � t X t = X 0 + b ( X u ) d u + σ ( X u ) d W u 0 0 ◮ ‘Simply’ reflected BSDEs on a boundary l ( X ): � T � T � T ( Z t ) ′ d W t + Y t = g ( X T ) + f ( X t , Y t , Z t ) d t − d K t t t t ( C1 ) Y t ≥ l ( X t ) (constrained value process) � T � � ( C2 ) Y t − l ( X t ) d K t = 0 (“optimality” of K) 0 ◮ Extension: doubly reflected BSDEs, reflected BSDEs in convex domain ֒ → normal reflection J-F Chassagneux Approximation of obliquely reflected BSDEs

  4. Introduction Obliquely reflected BSDEs A Discretization scheme for RBSDEs Example: Starting and stopping problem Convergence for the obliquely RBSDE Representation using “switched” BSDEs Geometric framework ◮ Multidimensional value process constrained in a domain C ( d ≥ 2) C = { y ∈ R d | y i ≥ P i ( y ) := max j ( y j − c ij ) } with c ii = 0, inf i � = j c ij > 0, c ij + c jk > c ik → P (oblique projection) is L -lipschitz with L > 1 (euclidean norm) ֒ ◮ example d = 2, oblique direction of reflection J-F Chassagneux Approximation of obliquely reflected BSDEs

  5. Introduction Obliquely reflected BSDEs A Discretization scheme for RBSDEs Example: Starting and stopping problem Convergence for the obliquely RBSDE Representation using “switched” BSDEs Obliquely reflected BSDEs ◮ System of reflected BSDEs: for 1 ≤ i ≤ d , � T � T Y i t = g i ( X T ) + f i ( X u , Y i u , Z i ( Z i u ) ′ d W u + K i T − K i u ) d u − t t t ( C1 ) Y t ∈ C (constrained by K ) � � � T Y i t − P i ( Y t ) d K i ( C2 ) t = 0 (’optimality’ of K ) 0 ◮ Hu and Tang 07, Hamadene and Zhang 08 J-F Chassagneux Approximation of obliquely reflected BSDEs

  6. Introduction Obliquely reflected BSDEs A Discretization scheme for RBSDEs Example: Starting and stopping problem Convergence for the obliquely RBSDE Representation using “switched” BSDEs Starting and Stopping problem (1) Hamadene and Jeanblanc (01): ◮ Consider e.g. a power station producing electricity whose price is given by a diffusion process X : d X t = b ( X t ) d t + σ ( X t ) d W t ◮ Two modes for the power station: mode 1 : operating, profit is then f 1 ( X t ) d t mode 2 : closed, profit is then f 2 ( X t ) d t → switching from one mode to another has a cost: c > 0 ֒ ◮ Management decide to produce electricity only when it is profitable enough. ◮ The management strategy is ( θ j , α j ) : θ j is a sequence of stopping times representing switching times from mode α j − 1 to α j . ( a t ) 0 ≤ t ≤ T is the state process (the management strategy). J-F Chassagneux Approximation of obliquely reflected BSDEs

  7. Introduction Obliquely reflected BSDEs A Discretization scheme for RBSDEs Example: Starting and stopping problem Convergence for the obliquely RBSDE Representation using “switched” BSDEs Starting and Stopping problem (2) ◮ Following a strategy a from t up to T , gives � T � f a s ( X s ) d s − J ( a , t ) = c 1 { t ≤ θ j ≤ T } t j ≥ 0 ◮ The optimization problem is then (at t = 0, for α 0 = 1) Y 1 0 := sup a E [ J ( a , 0)] At any date t ∈ [0 , T ] in state i ∈ { 1 , 2 } , the value function is Y i t . J-F Chassagneux Approximation of obliquely reflected BSDEs

  8. Introduction Obliquely reflected BSDEs A Discretization scheme for RBSDEs Example: Starting and stopping problem Convergence for the obliquely RBSDE Representation using “switched” BSDEs Solution ◮ Y is solution of a coupled optimal stopping problem �� τ � Y 1 f (1 , X s ) d s + ( Y 2 t = ess sup τ − c ) 1 { τ< T } | F t E t ≤ τ ≤ T t �� τ � Y 2 f (2 , X s ) d s + ( Y 1 t = ess sup E τ − c ) 1 { τ< T } | F t t ≤ τ ≤ T t ◮ The optimal strategy ( θ ∗ j , α ∗ j ) is given by α ∗ θ ∗ j +1 := inf { s ≥ θ ∗ i ∈{ 1 , 2 } Y i j j | Y = max s − c } s α ∗ j +1 := 1 if α ∗ j = 2 , or 2 if α ∗ j = 1 . J-F Chassagneux Approximation of obliquely reflected BSDEs

  9. Introduction Obliquely reflected BSDEs A Discretization scheme for RBSDEs Example: Starting and stopping problem Convergence for the obliquely RBSDE Representation using “switched” BSDEs System of reflected BSDEs Y is the solution of the following system of reflected BSDEs: � T � T � T Y i ( Z i s ) ′ d W s + d K i t = f ( i , X s ) d s − s , i ∈ { 1 , 2 } , t t t with (the coupling...) Y 1 t ≥ Y 2 t − c and Y 2 t ≥ Y 1 t − c , ∀ t ∈ [0 , T ] and (‘optimality’ of K ) � T � T � � � � Y 1 s − ( Y 2 d K 1 Y 2 s − ( Y 1 d K 2 s − c ) s = 0 and s − c ) s = 0 0 0 J-F Chassagneux Approximation of obliquely reflected BSDEs

  10. Introduction Obliquely reflected BSDEs A Discretization scheme for RBSDEs Example: Starting and stopping problem Convergence for the obliquely RBSDE Representation using “switched” BSDEs Remark: related obstacle problem ◮ On R × [0 , T ) � � − ∂ t u 1 − L u 1 − f 1 , u 1 − u 2 + c min = 0 � � − ∂ t u 2 − L u 2 − f 2 , u 2 − u 1 + c min = 0 u 1 ≥ u 2 − c and u 2 ≥ u 1 − c ◮ Terminal condition u ( T , . ) = 0 ◮ Link via Y 1 t = u 1 ( t , X t ) and Y 2 t = u 2 ( t , X t ) J-F Chassagneux Approximation of obliquely reflected BSDEs

  11. Introduction Obliquely reflected BSDEs A Discretization scheme for RBSDEs Example: Starting and stopping problem Convergence for the obliquely RBSDE Representation using “switched” BSDEs “Switching” problem - “switched” BSDEs ◮ “Switching” strategy a = ( α j , θ j ) j starting at ( i , t ) N a = # { k ∈ N ∗ | θ k ≤ T } ◮ State process - cost process a s = α 0 1 0 ≤ s ≤ θ 0 + � N a s := � N a j =1 α j − 1 1 θ j − 1 < s ≤ θ j , A a j =1 c α j − 1 ,α j 1 θ j ≤ s ≤ T ◮ “Switched” BSDE (following the strategy a ) � T � T t = g a T ( X T ) + U a f a s ( X s , U a s , V a V a s d W s − A a T + A a s ) d s − t t t ◮ Representation ( a ∗ : optimal strategy) Y i a U a t = U a ∗ t = ess sup t J-F Chassagneux Approximation of obliquely reflected BSDEs

  12. Introduction Approximation of the forward SDE A Discretization scheme for RBSDEs Approximation of the RBSDE Convergence for the obliquely RBSDE Stability issue Approximation of the forward SDE ◮ For ( b , σ ) : R d → R d × M d Lipschitz : � t � t X t = X 0 + b ( X u ) d u + σ ( X u ) d W u 0 0 ◮ Euler scheme X with π = { 0 = t 0 < ... < t n < ... < t N = T } : � X π = X 0 0 X π X π t n + b ( X π t n )( t − t n ) + σ ( X π = t n )( W t − W t n ) , t ∈ ( t n , t n +1 ] t ◮ Error ( b , σ Lipschitz) � � 1 2 C E rr ( X , X π ) := E | X t − X π t | 2 sup ≤ √ N t ∈ [0 , T ] (max n | t n +1 − t n | ≤ C N ) J-F Chassagneux Approximation of obliquely reflected BSDEs

  13. Introduction Approximation of the forward SDE A Discretization scheme for RBSDEs Approximation of the RBSDE Convergence for the obliquely RBSDE Stability issue A scheme for the RBSDE: an example ◮ RBSDE, Snell envelop of l ( X t ): � T � T t ( Z u ) ′ d W u + Y t = l ( X T ) − t d K s , Y t ≥ l ( X t ) ◮ Discrete Snell envelop of ( l ( X π ) t n ) n : � � Y π � Y π t n := E t n +1 | F t n Y π t n := � Y π t n ∨ l ( X π t n ) → terminal condition Y π T := l ( X π ֒ T ). ◮ More general domain/reflection: Y π t n = � Y π t n ∨ l ( X π t n ) → Y π t n = P ( � Y π t n ) J-F Chassagneux Approximation of obliquely reflected BSDEs

  14. Introduction Approximation of the forward SDE A Discretization scheme for RBSDEs Approximation of the RBSDE Convergence for the obliquely RBSDE Stability issue Moonwalk scheme for the RBSDE ◮ Implicit Euler scheme for the “BSDE part” : � � � t n , ¯ Y π Y π + ( t n +1 − t n ) f ( X π t n , Y π Z π t n := E t n +1 | F t n t n ) � � t n := ( t n +1 − t n ) − 1 E t n +1 ) ′ | F t n Z π ¯ ( W t n +1 − W t n )( Y π ◮ Taking into account the reflection Y π t n := � Y π ∈ℜ + P ( � Y π t n ) 1 t n ∈ℜ t n 1 t n / ℜ ⊂ π is the reflection grid with κ dates. T = � ◮ and terminal condition Y π Y π T := g ( X π T ). J-F Chassagneux Approximation of obliquely reflected BSDEs

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend