discretization and symmetry
play

Discretization and Symmetry Rob F. Remis and J orn T. Zimmerling - PowerPoint PPT Presentation

Discretization and Symmetry Rob F. Remis and J orn T. Zimmerling DCSE Fall School, Delft, November 4 8, 2019 1 Introduction Objective Discretize Maxwells equation to formulate model order reduction using linear algebra Symmetry in


  1. Discretization and Symmetry Rob F. Remis and J¨ orn T. Zimmerling DCSE Fall School, Delft, November 4 – 8, 2019 1

  2. Introduction Objective Discretize Maxwell’s equation to formulate model order reduction using linear algebra Symmetry in the discrete domain Application of this theory to imaging 2

  3. Instantaneously Reacting Material: 1D One-dimensional Maxwell equation �� 0 � � σ � � ε � � � E z � � J ext � 0 0 ∂ y z + + = − (1) ∂ t , ∂ y 0 0 0 0 µ H y 0 succinctly written as [ D + S + M ∂ t ] f = − q , (2) Discretization: differential operators & functions �→ matrices and vectors 3

  4. Maxwell on a grid E z ( y 0 ) E z ( y 1 ) E z ( y 2 ) E z ( y 3 ) E z ( y Q ) E z ( y Q +1 ) δ Q +1 δ 1 δ 2 δ 3 ˆ ˆ ˆ y = 0 y = L δ 1 δ 2 δ n H x (ˆ y 1 ) H x (ˆ y 2 ) H x (ˆ y 3 ) H x (ˆ y Q ) H x (ˆ y Q +1 ) 4

  5. Maxwell on a grid E z ( y Q ) E z ( y Q +1 ) E z ( y 0 ) E z ( y 1 ) E z ( y 2 ) E z ( y 3 ) δ Q +1 δ 1 δ 2 δ 3 ˆ ˆ ˆ y = 0 y = L δ 1 δ 2 δ n H x (ˆ y 1 ) H x (ˆ y 2 ) H x (ˆ y 3 ) H x (ˆ y Q ) H x (ˆ y Q +1 ) We discretize the equation ∂ y H x | y = y q + σ ( y q ) E z ( y q , t ) ε r ( y q ) ∂ t E z ( y q , t ) = −J ext ( y q , t ) , z on primary grid for q = 1 , 2 , ..., Q and ∂ y E z | y =ˆ y q + µ (ˆ y q ) ∂ t H x (ˆ y q , t ) = 0 on the dual grid for q = 1 , 2 , ..., Q + 1. 5

  6. Discrete Equations We finally arrive at h x (ˆ y q +1 , t ) − h x (ˆ y q , t ) + σ ( y q ) e z ( y q , t ) + ε ( y q ) ∂ t e z ( y q , t ) = − j ext ( y q , t ) , z ˆ δ y ; q for q = 1 , 2 , ..., Q and e z ( y q , t ) − e z ( y q − 1 , t ) + µ (ˆ y q ) ∂ t h x (ˆ y q , t ) = 0 , δ y ; q for q = 1 , 2 , ..., Q + 1. Where are the boundary conditions? 6

  7. System Formulation We collect the FD approximation in the vectors e z = [ e z ( y 1 , t ) , e z ( y 2 , t ) , ..., e z ( y Q , t )] T , y Q +1 , t )] T . h x = [ h x (ˆ y 1 , t ) , h x (ˆ y 2 , t ) , ..., h x (ˆ The source vector j ext is defined in a similar manner. In addition z we introduce the differentiation matrices ˆ Y and Y as δ − 1   − ˆ δ − 1 δ − 1 ˆ   y ;1 − δ − 1 δ − 1 y ;1 y ;1   − ˆ δ − 1 δ − 1 ˆ y ;2 y ;2     − δ − 1 δ − 1 y ;2 y ;2     y ;3 y ;3 · ·     ˆ Y = , Y = · · .      · ·    · ·      · ·    − δ − 1 δ − 1     − ˆ δ − 1 δ − 1 ˆ y ; Q y ; Q   − δ − 1 y ; Q y ; Q y ; Q +1 Y ∈ R Q × ( Q +1) and Y ∈ R ( Q +1) × Q . Note that ˆ 7

  8. System Formulation 2 We also introduce the diagonal medium matrices M σ = diag( σ ( y 1 ) , σ ( y 2 ) , ..., σ ( y Q )) , M ε = diag( ε ( y 1 ) , ε ( y 2 ) , ..., ε ( y Q )) , M µ = diag( µ (ˆ y 1 ) , µ (ˆ y 2 ) , ..., µ (ˆ y Q +1 )) . 8

  9. System Formulation 2 We also introduce the diagonal medium matrices M σ = diag( σ ( y 1 ) , σ ( y 2 ) , ..., σ ( y Q )) , M ε = diag( ε ( y 1 ) , ε ( y 2 ) , ..., ε ( y Q )) , M µ = diag( µ (ˆ y 1 ) , µ (ˆ y 2 ) , ..., µ (ˆ y Q +1 )) . Leading to the discrete system ˆ �� � � M σ � � M ε � � � e z � � j ext � 0 0 0 Y z + + = − , ∂ t Y 0 0 0 0 M µ h x 0 or more succinctly [D + S + M ∂ t ] f( t ) = − q( t ) . 9

  10. What happens in higher dimensions? Every field component ( H x , H y , E z ) gets defined on ints own grid ∂ x H y and ∂ y H x are evaluated on the primary grid of E z We sort these 2D fields into a single vector We still obtain a form similar to [D + S + M ∂ t ] f( t ) = − q( t ) . 10

  11. Properties and Symmetry summary To summarize we find D T W = − WD , aswell with δ − = diag (I , − I) D T W = δ − WD . This symmetry is useful to preserve in reduced order modeling. 11

  12. Can we image based on finite-differences? Assume a active array imaging configuration ? Ω Im Ω Array � µ Can we reconstruct the impedance z ( x ) = ε in 1D from boundary measurements u (0 , s ) in the Laplace ( s ) domain? 1 v x ( x , s ) + s z ( x ) u ( x , s ) = 0 u x ( x , s ) + sz ( x ) v ( x , s ) = 0 (3) v (0 , s ) = − 1 u ( L , s ) = 0 , 12

  13. Can we image based on finite-differences? We want to reconstruct z ( x ) from measuring u ( x ) Define the data as [2m-1]/[2m] rational function m Λ( s ) = u (0 , s ) r j r j ¯ � v (0 , s ) = − u (0 , s ) = + (4) s + ¯ s + ζ j ζ j j =1 m residues r j and poles ζ j 13

  14. Can we image based on finite-differences? Can we link this rational function to a FD discretization? u 2 u 3 u n +1 y = 0 δ 1 δ 2 δ 3 δ n ˆ ˆ ˆ ˆ δ 1 δ 2 δ 3 δ n v n +1 v 2 v 3 y = L Discretizing on this grid leads to v j +1 − v j + s 1 u j = 0 ˆ z FD δ j j u j − u j − 1 z FD + s ˆ v j = 0 j δ j − 1 v 1 ( s ) = − 1 u n +1 ( s ) = 0 . with z j = z ( y j ), ˆ z j = z (ˆ y j ), u j = u ( y j ) and v j = v (ˆ y j ) 14

  15. Compare spectral and FD discretization We have two representations for the same data. The FD data after sorting the field as [ u 1 , v 2 , u 2 , v 3 , . . . ] reads − 1 1     0 0 . . . 0 1   ˆ δ 1 z 1 1 − 1 0 . . . 0 ˆ    z 1  δ 1 δ 1       ... ... ... .  ...  Λ FD ( i ω ) = − e T     . + s e 1 , .   1           − 1 1  1  0 . . . 0       ˆ ˆ z n δ n δ n     1 − ˆ z n +1 0 0 0 . . . δ n and the data can be written as − 1      1    ζ 1 y 1 1 ζ 1 y 1         .   ...   ...     Λ FD ( i ω ) = e T . + s ,         . 1                 ζ m 1 y 1         ζ m 1 y 1 If we take m = n we can find a linear algebraic transform directly from Λ( s ) to Λ( s ) FD and link the poles ζ j and residues r j to z j and z j . ˆ 15

  16. Compare spectral and FD discretization The grid steps δ j and ˆ δ j are known and medium independent. The impedance can be found from the data (here m = 20) 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend