stochastic target problems and pricing under risk
play

Stochastic target problems and pricing under risk constraints B. - PowerPoint PPT Presentation

Stochastic target problems and pricing under risk constraints B. Bouchard Ceremade - Univ. Paris-Dauphine, and, Crest - Ensae Tamerza 2010 Joint works with R. Elie, M. N. Dang, N. Touzi, T. N. Vu Motivation General setting : trading


  1. The P − a.s. case ✷ Problem extension : Z φ t , z = ( X φ t , x , Y φ t , x , y ) � � y : ∃ φ s.t. Z φ v ( t , x ) := inf t , x , y ∈ O on [ t , T ] . ✷ Theorem : For all φ and θ ∈ T [ t , T ] : GDP1 : Z φ t , z ∈ O on [ t , T ] ⇒ Y φ t , z ( θ ) ≥ v ( θ, X φ t , x ( θ )) GDP2 : � � Y φ t , z ( θ ) ≥ v ( θ, X φ t , x ( θ )) and Z φ y < v ( t , x ) ⇒ P t , z ∈ O on [ t , θ ] < 1 ✷ First introduced by Soner and Touzi for super-hedging under Gamma constraints. Extended to American type contraints : obstacle version of B. and Vu.

  2. Constraints in expectations ✷ Problem extension : Z φ t , z = ( X φ t , x , Y φ t , x , y ) v ( t , x , p ) := � � � � y : ∃ φ s.t. Z φ G ( Z φ inf t , x , y ∈ O on [ t , T ] , E t , x , y ( T )) ≥ p .

  3. Constraints in expectations ✷ Problem extension : Z φ t , z = ( X φ t , x , Y φ t , x , y ) v ( t , x , p ) := � � � � y : ∃ φ s.t. Z φ G ( Z φ inf t , x , y ∈ O on [ t , T ] , E t , x , y ( T )) ≥ p . ✷ Theorem : For all φ and θ ∈ T [ t , T ] : GDP1 : Z φ t , z ∈ O on [ t , T ] ⇒ Y φ t , z ( θ ) ≥ v ( θ, X φ t , x ( θ ) , p ) ?

  4. Constraints in expectations ✷ Problem extension : Z φ t , z = ( X φ t , x , Y φ t , x , y ) v ( t , x , p ) := � � � � y : ∃ φ s.t. Z φ G ( Z φ inf t , x , y ∈ O on [ t , T ] , E t , x , y ( T )) ≥ p . ✷ Theorem : For all φ and θ ∈ T [ t , T ] : GDP1 : Z φ t , z ∈ O on [ t , T ] ⇒ Y φ t , z ( θ ) ≥ v ( θ, X φ t , x ( θ ) , P t , p ( θ )) with � � G ( Z φ P t , p ( θ ) := E t , z ( T )) | F θ

  5. Constraints in expectations ✷ Problem extension : Z φ t , z = ( X φ t , x , Y φ t , x , y ) v ( t , x , p ) := � � � � y : ∃ φ s.t. Z φ G ( Z φ inf t , x , y ∈ O on [ t , T ] , E t , x , y ( T )) ≥ p . ✷ Theorem : For all φ and θ ∈ T [ t , T ] : GDP1 : Z φ t , z ∈ O on [ t , T ] ⇒ Y φ t , z ( θ ) ≥ v ( θ, X φ t , x ( θ ) , P t , p ( θ )) with � θ � � G ( Z φ P t , p ( θ ) := E t , z ( T )) | F θ = p + α s dW s , t if F t = σ ( W s , s ≤ t ) .

  6. Constraints in expectations ✷ Problem extension : Z φ t , z = ( X φ t , x , Y φ t , x , y ) v ( t , x , p ) := � � � � y : ∃ φ s.t. Z φ G ( Z φ inf t , x , y ∈ O on [ t , T ] , E t , x , y ( T )) ≥ p .

  7. Constraints in expectations ✷ Problem extension : Z φ t , z = ( X φ t , x , Y φ t , x , y ) v ( t , x , p ) := � � � � y : ∃ φ s.t. Z φ G ( Z φ inf t , x , y ∈ O on [ t , T ] , E t , x , y ( T )) ≥ p . ✷ Problem reduction : For all φ : � � Z φ G ( Z φ t , z ∈ O on [ t , T ] and E t , z ( T )) ≥ p if and only if ∃ α such that ( Z φ t , p ) ∈ O × R on [ t , T ] and G ( Z φ t , z , P α t , z ( T )) ≥ P α t , p ( T ) with � · � � G ( Z φ P t , p := E t , z ( T )) | F · = p + α s dW s . t

  8. Constraints in expectations ✷ Problem extension : Z φ t , z = ( X φ t , x , Y φ t , x , y ) v ( t , x , p ) := � � � � y : ∃ φ s.t. Z φ G ( Z φ inf t , x , y ∈ O on [ t , T ] , E t , x , y ( T )) ≥ p . ✷ Problem reduction : For all φ : � � Z φ G ( Z φ t , z ∈ O on [ t , T ] and E t , z ( T )) ≥ p if and only if ∃ α such that ( Z φ t , p ) ∈ O × R on [ t , T ] and G ( Z φ t , z , P α t , z ( T )) ≥ P α t , p ( T ) with � · � � G ( Z φ P t , p := E t , z ( T )) | F · = p + α s dW s . t ✷ Can use the GDP with an increased controlled process.

  9. PDE derivation

  10. PDE derivation ✷ Previous works

  11. PDE derivation ✷ Previous works • Soner and Touzi : Brownian filtration and bounded controls (apart from particular cases in finance). P − a.s. criteria. Problems with Gamma constraints with Zhang, Cheridito.

  12. PDE derivation ✷ Previous works • Soner and Touzi : Brownian filtration and bounded controls (apart from particular cases in finance). P − a.s. criteria. Problems with Gamma constraints with Zhang, Cheridito. • B. : Jump diffusion with bounded control and locally bounded jumps. P − a.s. criteria.

  13. PDE derivation ✷ Previous works • Soner and Touzi : Brownian filtration and bounded controls (apart from particular cases in finance). P − a.s. criteria. Problems with Gamma constraints with Zhang, Cheridito. • B. : Jump diffusion with bounded control and locally bounded jumps. P − a.s. criteria. • B., Elie and Touzi : Brownian filtration with unbounded controls. Criteria in expectation (concentrating on the case of a criteria in expectation).

  14. PDE derivation ✷ Previous works • Soner and Touzi : Brownian filtration and bounded controls (apart from particular cases in finance). P − a.s. criteria. Problems with Gamma constraints with Zhang, Cheridito. • B. : Jump diffusion with bounded control and locally bounded jumps. P − a.s. criteria. • B., Elie and Touzi : Brownian filtration with unbounded controls. Criteria in expectation (concentrating on the case of a criteria in expectation). • B. and Vu : “American” case.

  15. PDE derivation ✷ Previous works • Soner and Touzi : Brownian filtration and bounded controls (apart from particular cases in finance). P − a.s. criteria. Problems with Gamma constraints with Zhang, Cheridito. • B. : Jump diffusion with bounded control and locally bounded jumps. P − a.s. criteria. • B., Elie and Touzi : Brownian filtration with unbounded controls. Criteria in expectation (concentrating on the case of a criteria in expectation). • B. and Vu : “American” case. • Moreau : Extension of B., Elie and Touzi to jump diffusions.

  16. PDE derivation ✷ Previous works • Soner and Touzi : Brownian filtration and bounded controls (apart from particular cases in finance). P − a.s. criteria. Problems with Gamma constraints with Zhang, Cheridito. • B. : Jump diffusion with bounded control and locally bounded jumps. P − a.s. criteria. • B., Elie and Touzi : Brownian filtration with unbounded controls. Criteria in expectation (concentrating on the case of a criteria in expectation). • B. and Vu : “American” case. • Moreau : Extension of B., Elie and Touzi to jump diffusions. ✷ In the following, we consider the case with controls of bounded variations types (simplification of a work with M. N. Dang).

  17. The general model ✷ Set of controls : L ∈ L set of continuous non-decreasing R d -valued adapted processes L s.t. E � | L | 2 � < ∞ . T

  18. The general model ✷ Set of controls : L ∈ L set of continuous non-decreasing R d -valued adapted processes L s.t. E � | L | 2 � < ∞ . T ✷ Dynamics of Z = ( X , Y ) ∈ R d × R : dX L = µ X ( X L ) dr + σ X ( X L ) dW + β X ( X L ) dL dY L = µ Y ( Z L ) dr + σ Y ( Z L ) dW + β Y ( Z L ) dL .

  19. The general model ✷ Set of controls : L ∈ L set of continuous non-decreasing R d -valued adapted processes L s.t. E � | L | 2 � < ∞ . T ✷ Dynamics of Z = ( X , Y ) ∈ R d × R : dX L = µ X ( X L ) dr + σ X ( X L ) dW + β X ( X L ) dL dY L = µ Y ( Z L ) dr + σ Y ( Z L ) dW + β Y ( Z L ) dL . ✷ Problem : y : ∃ L ∈ L / Z L G ( Z L � � � � v ( t , x , p ) := inf t , x , y ∈ O , E t , x , y ( T )) ≥ p

  20. The general model ✷ Set of controls : L ∈ L set of continuous non-decreasing R d -valued adapted processes L s.t. E � | L | 2 � < ∞ . T ✷ Dynamics of Z = ( X , Y ) ∈ R d × R : dX L = µ X ( X L ) dr + σ X ( X L ) dW + β X ( X L ) dL dY L = µ Y ( Z L ) dr + σ Y ( Z L ) dW + β Y ( Z L ) dL . ✷ Problem : y : ∃ L ∈ L / Z L G ( Z L � � � � v ( t , x , p ) := inf t , x , y ∈ O , E t , x , y ( T )) ≥ p ✷ Reduction : A set of predictable square integrable processes y : ∃ ( L , α ) ∈ L × A / Z L t , x , y ∈ O , G ( Z L t , x , y ( T )) ≥ P α � � inf t , p ( T ) .

  21. Formal derivation of the PDE Assume that v is smooth and the inf is achieved. For y = v ( t , x , p ) , ∃ ( L , α ) such that Z L t , z ∈ O on [ t , T ] and G ( Z L t , x , y ( T )) ≥ P α t , p ( T ) .

  22. Formal derivation of the PDE Assume that v is smooth and the inf is achieved. For y = v ( t , x , p ) , ∃ ( L , α ) such that Z L t , z ∈ O on [ t , T ] and G ( Z L t , x , y ( T )) ≥ P α t , p ( T ) . Then Y L t , z ( t +) ≥ v ( t + , X L t , x ( t +) , P α t , p ( t +)) and

  23. Formal derivation of the PDE Assume that v is smooth and the inf is achieved. For y = v ( t , x , p ) , ∃ ( L , α ) such that Z L t , z ∈ O on [ t , T ] and G ( Z L t , x , y ( T )) ≥ P α t , p ( T ) . Then Y L t , z ( t +) ≥ v ( t + , X L t , x ( t +) , P α t , p ( t +)) and µ Y ( z ) − L α � � X , P v ( t , x , p ) dt ≥ ( σ Y ( z ) − D x v ( t , x , p ) σ X ( x ) − D p v ( t , x , p ) α t ) dW t + ( β Y ( z ) − D x v ( t , x , p ) β X ( x )) dL t

  24. Formal derivation of the PDE µ Y ( z ) − L α � � X , P v ( t , x , p ) dt ≥ ( σ Y ( z ) − D x v ( t , x , p ) σ X ( x ) − D p v ( t , x , p ) α t ) dW t + ( β Y ( z ) − D x v ( t , x , p ) β X ( x )) dL t

  25. Formal derivation of the PDE µ Y ( z ) − L α � � X , P v ( t , x , p ) dt ≥ ( σ Y ( z ) − D x v ( t , x , p ) σ X ( x ) − D p v ( t , x , p ) α t ) dW t + ( β Y ( z ) − D x v ( t , x , p ) β X ( x )) dL t µ Y ( x , v ( t , x , p )) − L α Ok if X , P v ( t , x , p ) ≥ 0 with σ Y ( x , v ( t , x , p )) = D x v ( t , x , p ) σ X ( x ) − D p v ( t , x , p ) α .

  26. Formal derivation of the PDE µ Y ( z ) − L α � � X , P v ( t , x , p ) dt ≥ ( σ Y ( z ) − D x v ( t , x , p ) σ X ( x ) − D p v ( t , x , p ) α t ) dW t + ( β Y ( z ) − D x v ( t , x , p ) β X ( x )) dL t µ Y ( x , v ( t , x , p )) − L α Ok if X , P v ( t , x , p ) ≥ 0 with σ Y ( x , v ( t , x , p )) = D x v ( t , x , p ) σ X ( x ) − D p v ( t , x , p ) α . Or ( β Y ( x , v ( t , x , p )) − D x v ( t , x , p ) β X ( x )) ℓ > 0 with ℓ ∈ ∆ + := ∂ B 1 ( 0 ) ∩ R d + .

  27. Formal derivation of the PDE Set µ Y ( · , v ) − L α � � Fv := sup X , P v , α ∈ Nv Gv := max { [ β Y ( · , v ) − D x v ( t , x ) β X ( x )] ℓ, ℓ ∈ ∆ + } with Nv := { α : σ Y ( · , v ) = D x v σ X + D p v α } R d ∆ + := + ∩ ∂ B 1 ( 0 ) . PDE characterization in the interior of the domain max { Fv , Gv } = 0 on ( t , x , v ( t , x )) ∈ int ( D ) where D := { ( t , x , y ) : ( x , y ) ∈ O ( t ) } .

  28. PDE on the space boundary ( x , y ) ∈ ∂ O ( t ) Domain is D := { ( t , x , y ) : ( x , y ) ∈ O ( t ) } .

  29. PDE on the space boundary ( x , y ) ∈ ∂ O ( t ) Domain is D := { ( t , x , y ) : ( x , y ) ∈ O ( t ) } . Assumption : D ∈ C 1 , 2 (or intersection of C 1 , 2 domains).

  30. PDE on the space boundary ( x , y ) ∈ ∂ O ( t ) Domain is D := { ( t , x , y ) : ( x , y ) ∈ O ( t ) } . Assumption : D ∈ C 1 , 2 (or intersection of C 1 , 2 domains). Take δ ∈ C 1 , 2 such that δ > 0 in int ( D ) , δ = 0 on ∂ D and δ < 0 elsewhere.

  31. PDE on the space boundary ( x , y ) ∈ ∂ O ( t ) Domain is D := { ( t , x , y ) : ( x , y ) ∈ O ( t ) } . Assumption : D ∈ C 1 , 2 (or intersection of C 1 , 2 domains). Take δ ∈ C 1 , 2 such that δ > 0 in int ( D ) , δ = 0 on ∂ D and δ < 0 elsewhere. The state constraints imposes d δ ( t , Z L t , z ( t )) ≥ 0 if ( t , z ) ∈ ∂ D .

  32. PDE on the space boundary ( x , y ) ∈ ∂ O ( t ) Domain is D := { ( t , x , y ) : ( x , y ) ∈ O ( t ) } . Assumption : D ∈ C 1 , 2 (or intersection of C 1 , 2 domains). Take δ ∈ C 1 , 2 such that δ > 0 in int ( D ) , δ = 0 on ∂ D and δ < 0 elsewhere. The state constraints imposes d δ ( t , Z L t , z ( t )) ≥ 0 if ( t , z ) ∈ ∂ D . As above it implies : either L Z δ ( t , x , y ) ≥ 0 and D δ ( t , x , y ) σ Z ( x , y ) = 0

  33. PDE on the space boundary ( x , y ) ∈ ∂ O ( t ) Domain is D := { ( t , x , y ) : ( x , y ) ∈ O ( t ) } . Assumption : D ∈ C 1 , 2 (or intersection of C 1 , 2 domains). Take δ ∈ C 1 , 2 such that δ > 0 in int ( D ) , δ = 0 on ∂ D and δ < 0 elsewhere. The state constraints imposes d δ ( t , Z L t , z ( t )) ≥ 0 if ( t , z ) ∈ ∂ D . As above it implies : or max { D δ ( t , x , y ) β z ( x , y ) ℓ, ℓ ∈ ∆ + } > 0 .

  34. PDE on the space boundary ( x , y ) ∈ ∂ O ( t ) The GDP and the need for a reflexion on the boundary leads to the definition of N in v := { α ∈ Nv : D δ ( · , v ) σ Z ( · , v ) = 0 } F in v µ Y ( · , v ) − L α � � := sup min X , P v , L Z δ ( · , v ) α ∈ N in v G in v := ℓ ∈ ∆ + min { [ β Y ( · , v ) − D x v β X ] ℓ , D δ ( · , v ) β z ( · , v ) ℓ } max

  35. PDE on the space boundary ( x , y ) ∈ ∂ O ( t ) The GDP and the need for a reflexion on the boundary leads to the definition of N in v := { α ∈ Nv : D δ ( · , v ) σ Z ( · , v ) = 0 } F in v µ Y ( · , v ) − L α � � := sup min X , P v , L Z δ ( · , v ) α ∈ N in v G in v := ℓ ∈ ∆ + min { [ β Y ( · , v ) − D x v β X ] ℓ , D δ ( · , v ) β z ( · , v ) ℓ } max Then, the PDE on the boundary reads max { F in 0 v , G in v } = 0 on ( t , x , v ( t , x )) ∈ ∂ D .

  36. Example Pricing of the WVAP-guaranteed liquidation contract

  37. The VWAP guaranted pricing problem ✷ K stocks to liquidate.

  38. The VWAP guaranted pricing problem ✷ K stocks to liquidate. ✷ Has an impact on prices

  39. The VWAP guaranted pricing problem ✷ K stocks to liquidate. ✷ Has an impact on prices ✷ Ensure that will guarantee a mean selling price of γ × the mean selling price of the market.

  40. The VWAP guaranted pricing problem ✷ K stocks to liquidate. ✷ Has an impact on prices ✷ Ensure that will guarantee a mean selling price of γ × the mean selling price of the market. ✷ What is the price of the guarantee ?

  41. The VWAP guaranted pricing problem ✷ Controls : L ↑ adapted and continuous. L t = # of sold stocks.

  42. The VWAP guaranted pricing problem ✷ Controls : L ↑ adapted and continuous. L t = # of sold stocks. ✷ Price dynamics : dX L , 1 = X L , 1 µ ( X L , 1 ) dt + X L , 1 σ ( X L , 1 ) dW t − X L , 1 β ( X L , 1 ( t )) dL t

  43. The VWAP guaranted pricing problem ✷ Controls : L ↑ adapted and continuous. L t = # of sold stocks. ✷ Price dynamics : dX L , 1 = X L , 1 µ ( X L , 1 ) dt + X L , 1 σ ( X L , 1 ) dW t − X L , 1 β ( X L , 1 ( t )) dL t ✷ Cumulated gain from liquidation : dY L = X L , 1 dL t

  44. The VWAP guaranted pricing problem ✷ Controls : L ↑ adapted and continuous. L t = # of sold stocks. ✷ Price dynamics : dX L , 1 = X L , 1 µ ( X L , 1 ) dt + X L , 1 σ ( X L , 1 ) dW t − X L , 1 β ( X L , 1 ( t )) dL t ✷ Cumulated gain from liquidation : dY L = X L , 1 dL t ✷ Volume weighted market price : dX L , 2 = X L , 1 d ϑ .

  45. The VWAP guaranted pricing problem ✷ Controls : L ↑ adapted and continuous. L t = # of sold stocks. ✷ Price dynamics : dX L , 1 = X L , 1 µ ( X L , 1 ) dt + X L , 1 σ ( X L , 1 ) dW t − X L , 1 β ( X L , 1 ( t )) dL t ✷ Cumulated gain from liquidation : dY L = X L , 1 dL t ✷ Volume weighted market price : dX L , 2 = X L , 1 d ϑ . ✷ Cumulated # of sold stocks : X L , 3 := L ∈ [Λ , ¯ Λ] → { K }

  46. The VWAP guaranted pricing problem ✷ Controls : L ↑ adapted and continuous. L t = # of sold stocks. ✷ Price dynamics : dX L , 1 = X L , 1 µ ( X L , 1 ) dt + X L , 1 σ ( X L , 1 ) dW t − X L , 1 β ( X L , 1 ( t )) dL t ✷ Cumulated gain from liquidation : dY L = X L , 1 dL t ✷ Volume weighted market price : dX L , 2 = X L , 1 d ϑ . ✷ Cumulated # of sold stocks : X L , 3 := L ∈ [Λ , ¯ Λ] → { K } ✷ Risk constraint (with γ ∈ ( 0 , 1 ) ) � � �� X L , 3 t , x , y ( T ) − K γ X L , 2 Y L t , x ∈ [Λ , Λ] and E ℓ t , x ( T ) ≥ p } .

  47. The VWAP guaranted pricing problem ✷ Controls : L ↑ adapted and continuous. L t = # of sold stocks. ✷ Price dynamics : dX L , 1 = X L , 1 µ ( X L , 1 ) dt + X L , 1 σ ( X L , 1 ) dW t − X L , 1 β ( X L , 1 ( t )) dL t ✷ Cumulated gain from liquidation : dY L = X L , 1 dL t ✷ Volume weighted market price : dX L , 2 = X L , 1 d ϑ . ✷ Cumulated # of sold stocks : X L , 3 := L ∈ [Λ , ¯ Λ] → { K } ✷ Pricing function (with Ψ( x , y ) = ℓ ( y − γ Kx 2 ) , γ > 0) � � v ( t , x , p ) := inf { y ≥ 0 : ∃ L s.t. X L , 3 Ψ( Z L t , x ∈ [Λ , Λ] , E t , x , y ( T )) ≥ p } .

  48. PDE characterization Proposition Under “good assumptions”, v ∗ is a viscosity supersolution on [ 0 , T ) of F ϕ , x 1 + x 1 β D x 1 ϕ − D x 3 ϕ = 0 if Λ ≤ x 3 ≤ Λ � � max and v ∗ is a subsolution on [ 0 , T ) of F ϕ , x 1 + x 1 β D x 1 ϕ − D x 3 ϕ Λ < x 3 < Λ � � �� min ϕ , max = 0 if ϕ , x 1 + β D x 1 ϕ − D x 3 ϕ � � Λ = x 3 min = 0 if x 3 = Λ , min { ϕ , F ϕ } = 0 if where F ϕ := −L X ϕ − ( x 1 σ ) 2 � � | D x 1 ϕ/ D p ϕ | 2 D 2 p ϕ − 2 ( D x 1 ϕ/ D p ϕ ) D 2 ( x 1 , p ) ϕ . 2 Moreover, v ∗ ( T , x , p ) = v ∗ ( T , x , p ) = Ψ − 1 ( x , p ) .

  49. PDE characterization Proposition Under “good assumptions”, v ∗ is a viscosity supersolution on [ 0 , T ) of F ϕ , x 1 + x 1 β D x 1 ϕ − D x 3 ϕ = 0 if Λ ≤ x 3 ≤ Λ � � max and v ∗ is a subsolution on [ 0 , T ) of F ϕ , x 1 + x 1 β D x 1 ϕ − D x 3 ϕ Λ < x 3 < Λ � � �� min ϕ , max = 0 if ϕ , x 1 + β D x 1 ϕ − D x 3 ϕ � � Λ = x 3 min = 0 if x 3 = Λ , min { ϕ , F ϕ } = 0 if where F ϕ := −L X ϕ − ( x 1 σ ) 2 � � | D x 1 ϕ/ D p ϕ | 2 D 2 p ϕ − 2 ( D x 1 ϕ/ D p ϕ ) D 2 ( x 1 , p ) ϕ . 2 Moreover, v ∗ ( T , x , p ) = v ∗ ( T , x , p ) = Ψ − 1 ( x , p ) .

  50. The “good assumptions” ✷ On Λ , Λ : Λ , Λ ∈ C 1 , Λ < ¯ Λ on [ 0 , T ) , D Λ , D Λ ∈ ( 0 , M ]

  51. The “good assumptions” ✷ On Λ , Λ : Λ , Λ ∈ C 1 , Λ < ¯ Λ on [ 0 , T ) , D Λ , D Λ ∈ ( 0 , M ] ✷ On the loss function ℓ : ∃ ǫ > 0 s.t. ǫ ≤ D − ℓ , D + ℓ ≤ ǫ − 1 , r →∞ D + ℓ ( r ) = lim r →∞ D − ℓ ( r ) . and lim

  52. Control on the gradients ✷ Proposition v ∗ is a viscosity supersolution of min { D p ϕ − ǫ , ( D x 1 ϕ − CD p ϕ ) 1 x 1 > 0 , − D x 1 ϕ + CD p ϕ } = 0 ( ∗ ) and v ∗ is a viscosity subsolution of max {− D p ϕ + ǫ , ( D x 1 ϕ − CD p ϕ ) 1 x 1 > 0 , − D x 1 ϕ + CD p ϕ } = 0 . ( ∗∗ ) where C is continuous and depends only on x .

  53. Control on the gradients ✷ Proposition v ∗ is a viscosity supersolution of min { D p ϕ − ǫ , ( D x 1 ϕ − CD p ϕ ) 1 x 1 > 0 , − D x 1 ϕ + CD p ϕ } = 0 ( ∗ ) and v ∗ is a viscosity subsolution of max {− D p ϕ + ǫ , ( D x 1 ϕ − CD p ϕ ) 1 x 1 > 0 , − D x 1 ϕ + CD p ϕ } = 0 . ( ∗∗ ) where C is continuous and depends only on x . ✷ Provides a control on the ratio D x 1 ϕ/ D p ϕ in F ϕ := −L X ϕ − ( x 1 σ ) 2 � � | D x 1 ϕ/ D p ϕ | 2 D 2 p ϕ − 2 ( D x 1 ϕ/ D p ϕ ) D 2 ( x 1 , p ) ϕ . 2

  54. More controls on v

  55. More controls on v ✷ It also implies that ∃ η > 0 s.t. 0 ≤ v ( t , x , p ) ≤ ǫ − 1 | p − ℓ ( 0 ) | + γη ( 1 + | x | ) ,

  56. More controls on v ✷ It also implies that ∃ η > 0 s.t. 0 ≤ v ( t , x , p ) ≤ ǫ − 1 | p − ℓ ( 0 ) | + γη ( 1 + | x | ) , ✷ and that for ( t n , x n , p n ) n s.t. ( t n , x n ) → ( t , x ) : n →∞ v ∗ ( t n , x n , p n ) = 0 if p n → −∞ , n →∞ v ∗ ( t n , x n , p n ) = lim lim v ∗ ( t n , x n , p n ) v ∗ ( t n , x n , p n ) 1 lim = lim = D ℓ ( ∞ ) if p n → ∞ . p n p n n →∞ n →∞

  57. More controls on v ✷ It also implies that ∃ η > 0 s.t. 0 ≤ v ( t , x , p ) ≤ ǫ − 1 | p − ℓ ( 0 ) | + γη ( 1 + | x | ) , ✷ and that for ( t n , x n , p n ) n s.t. ( t n , x n ) → ( t , x ) : n →∞ v ∗ ( t n , x n , p n ) = 0 if p n → −∞ , n →∞ v ∗ ( t n , x n , p n ) = lim lim v ∗ ( t n , x n , p n ) v ∗ ( t n , x n , p n ) 1 lim = lim = D ℓ ( ∞ ) if p n → ∞ . p n p n n →∞ n →∞ ✷ A little more : v is continuous in p and x 3 .

  58. Uniqueness ✷ Want a comparison resul in the class of function with the above limit and growth conditions.

  59. Uniqueness ✷ Want a comparison resul in the class of function with the above limit and growth conditions. ✷ Recall that F ϕ := −L X ϕ − ( x 1 σ ) 2 � � | D x 1 ϕ/ D p ϕ | 2 D 2 p ϕ − 2 ( D x 1 ϕ/ D p ϕ ) D 2 ( x 1 , p ) ϕ . 2

  60. Uniqueness ✷ Want a comparison resul in the class of function with the above limit and growth conditions. ✷ Recall that F ϕ := −L X ϕ − ( x 1 σ ) 2 � � | D x 1 ϕ/ D p ϕ | 2 D 2 p ϕ − 2 ( D x 1 ϕ/ D p ϕ ) D 2 ( x 1 , p ) ϕ . 2 ✷ We now control D x 1 ϕ/ D p ϕ . This is not enough... If we need to penalize in x 1 (stock price) then the therm | D x 1 ϕ/ D p ϕ | 2 D 2 p ϕ will blow up as n → ∞ , where n 2 | 2 du to the doubling of comes from the usual penalisation n | x 1 1 − x 1 constants.

  61. Uniqueness ✷ Want a comparison resul in the class of function with the above limit and growth conditions. ✷ Recall that F ϕ := −L X ϕ − ( x 1 σ ) 2 � � | D x 1 ϕ/ D p ϕ | 2 D 2 p ϕ − 2 ( D x 1 ϕ/ D p ϕ ) D 2 ( x 1 , p ) ϕ . 2 ✷ We now control D x 1 ϕ/ D p ϕ . This is not enough... If we need to penalize in x 1 (stock price) then the term | D x 1 ϕ/ D p ϕ | 2 D 2 p ϕ will blow up as n → ∞ , where n comes 2 | 2 due to the doubling of from the usual penalisation n | x 1 1 − x 1 constants.

  62. Uniqueness ✷ Want a comparison resul in the class of function with the above limit and growth conditions. ✷ Recall that F ϕ := −L X ϕ − ( x 1 σ ) 2 � � | D x 1 ϕ/ D p ϕ | 2 D 2 p ϕ − 2 ( D x 1 ϕ/ D p ϕ ) D 2 ( x 1 , p ) ϕ . 2 ✷ We now control D x 1 ϕ/ D p ϕ . Assumption : x 1 > 0 s.t. µ (ˆ x 1 ) ≤ 0 = σ (ˆ x 1 ) . ∃ ˆ

  63. Uniqueness ✷ Want a comparison resul in the class of function with the above limit and growth conditions. ✷ Recall that F ϕ := −L X ϕ − ( x 1 σ ) 2 � � | D x 1 ϕ/ D p ϕ | 2 D 2 p ϕ − 2 ( D x 1 ϕ/ D p ϕ ) D 2 ( x 1 , p ) ϕ . 2 ✷ We now control D x 1 ϕ/ D p ϕ . Assumption : x 1 > 0 s.t. µ (ˆ x 1 ) ≤ 0 = σ (ˆ x 1 ) . ∃ ˆ ✷ Bound on the stock price...

  64. Comparison ✷ Theorem : Let U (resp. V ) be a non-negative super- and subsolutions which are continuous in x 3 . Assume that U ( t , x , p ) ≥ V ( t , x , p ) if t = T or x 1 ∈ { 0 , 2 ˆ x 1 } , and that ∃ c + > 0 and c − ∈ R s.t. V ( t ′ , x ′ , p ′ ) / p ′ ≤ c + ≤ ( t ′ , y ′ , p ′ ) → ( t , y , ∞ ) U ( t ′ , y ′ , p ′ ) / p ′ , lim sup lim inf ( t ′ , x ′ , p ′ ) → ( t , x , ∞ ) V ( t ′ , x ′ , p ′ ) ≤ c − ≤ ( t ′ , y ′ , p ′ ) → ( t , y , −∞ ) U ( t ′ , y ′ , p ′ ) . lim sup lim inf ( t ′ , x ′ , p ′ ) → ( t , x , −∞ ) If either U is a supersolution of (*) which is continuous in p , or V is a subsolution of (**) which is continuous in p , then U ≥ V .

  65. Additional remarks

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend