convex discretization of functionals involving the monge
play

Convex discretization of functionals involving the Monge-Amp` ere - PowerPoint PPT Presentation

Convex discretization of functionals involving the Monge-Amp` ere operator Quentin M erigot CNRS / Universit e Paris-Dauphine Joint work with J.D. Benamou, G. Carlier and E. Oudet 1 1. Motivation: Gradient flows in Wasserstein space


  1. Convex discretization of functionals involving the Monge-Amp` ere operator Quentin M´ erigot CNRS / Universit´ e Paris-Dauphine Joint work with J.D. Benamou, G. Carlier and ´ E. Oudet 1

  2. 1. Motivation: Gradient flows in Wasserstein space 2

  3. Background: Optimal transport R d p 2 � x � 2 d µ ( x ) < + ∞} P 2 ( R d ) = { µ ∈ P ( R d ); � ν P ac 2 ( R d ) = P 2 ( R d ) ∩ L 1 ( R d ) π p 1 ◮ Wasserstein distance between µ, ν ∈ P 2 ( R d ) , R d Γ( µ, ν ) := { π ∈ P ( R d × R d ); p 1# π = µ, p 2# π = ν } µ � x − y � 2 d π ( x, y ) . Definition: W 2 � 2 ( µ, ν ) := min π ∈ Γ( µ,ν ) 3

  4. Background: Optimal transport R d p 2 � x � 2 d µ ( x ) < + ∞} P 2 ( R d ) = { µ ∈ P ( R d ); � ν P ac 2 ( R d ) = P 2 ( R d ) ∩ L 1 ( R d ) π p 1 ◮ Wasserstein distance between µ, ν ∈ P 2 ( R d ) , R d Γ( µ, ν ) := { π ∈ P ( R d × R d ); p 1# π = µ, p 2# π = ν } µ � x − y � 2 d π ( x, y ) . Definition: W 2 � 2 ( µ, ν ) := min π ∈ Γ( µ,ν ) Def: K := finite convex functions on R d ◮ Relation to convex functions: Theorem (Brenier): Given µ ∈ P ac 2 ( R d ) and ν ∈ P 2 ( R d ) , [Brenier ’91] R d � x − ∇ φ ( x ) � 2 d µ ( x ) ∃ φ ∈ K such that ∇ φ # µ = ν , and W 2 � 2 ( µ, ν ) = 3

  5. Background: Optimal transport R d p 2 � x � 2 d µ ( x ) < + ∞} P 2 ( R d ) = { µ ∈ P ( R d ); � ν P ac 2 ( R d ) = P 2 ( R d ) ∩ L 1 ( R d ) π p 1 ◮ Wasserstein distance between µ, ν ∈ P 2 ( R d ) , R d Γ( µ, ν ) := { π ∈ P ( R d × R d ); p 1# π = µ, p 2# π = ν } µ � x − y � 2 d π ( x, y ) . Definition: W 2 � 2 ( µ, ν ) := min π ∈ Γ( µ,ν ) Def: K := finite convex functions on R d ◮ Relation to convex functions: Theorem (Brenier): Given µ ∈ P ac 2 ( R d ) and ν ∈ P 2 ( R d ) , [Brenier ’91] R d � x − ∇ φ ( x ) � 2 d µ ( x ) ∃ φ ∈ K such that ∇ φ # µ = ν , and W 2 � 2 ( µ, ν ) = Given any µ ∈ P ac 2 ( R d ) , we get a ”parameterization” of P 2 ( R d ) , or more precisely, an onto map K �→ P 2 ( R d ) , φ �→ ∇ φ # µ. 3

  6. Gas equilibrium and displacement convexity ◮ Equilibrium states of gazes: min ν ∈P 2 ( R d ) U ( ν ) + E ( ν ) �  ν = particle distribution R d U ( σ ( x )) d x if d ν = σ d H d  U ( ν ) := internal energy + ∞ if not  � � E ( ν ) := R d V ( x ) d ν ( x ) + R d W ( x − y ) d[ ν ⊗ ν ]( x, y ) interaction energy potential energy 4

  7. Gas equilibrium and displacement convexity ◮ Equilibrium states of gazes: min ν ∈P 2 ( R d ) U ( ν ) + E ( ν ) �  ν = particle distribution R d U ( σ ( x )) d x if d ν = σ d H d  U ( ν ) := internal energy + ∞ if not  � � E ( ν ) := R d V ( x ) d ν ( x ) + R d W ( x − y ) d[ ν ⊗ ν ]( x, y ) interaction energy potential energy ◮ Displacement convexity Definition: F is displacement-convex if for any W 2 -geodesic ( ν t ) in P ac 2 ( R d ) , the function t �→ F ( ν t ) is convex. Theorem: V, W : R d → R are convex functions = ⇒ E is displacement-convex r d U ( r − d ) is convex non-increasing, U (0) = 0 = ⇒ U is displacement-convex − → strict convexity = ⇒ uniqueness of minimum [McCann ’94] 4

  8. Convexity under generalized displacements ◮ Generalized displacement convexity Definition: F is convex under generalized displacement (u.g.d.) if for any µ in P ac 2 ( R d ) , the function φ ∈ H �→ F ( ∇ φ # µ ) is convex. 5

  9. Convexity under generalized displacements ◮ Generalized displacement convexity Definition: F is convex under generalized displacement (u.g.d.) if for any µ in P ac 2 ( R d ) , the function φ ∈ H �→ F ( ∇ φ # µ ) is convex. µ t = ((1 − t )id + t ∇ φ ) # µ geodesic for W 2 5

  10. Convexity under generalized displacements ◮ Generalized displacement convexity Definition: F is convex under generalized displacement (u.g.d.) if for any µ in P ac 2 ( R d ) , the function φ ∈ H �→ F ( ∇ φ # µ ) is convex. µ t = ((1 − t )id + t ∇ φ ) # µ µ t = ((1 − t ) ∇ φ 0 + t ∇ φ 1 ) # µ geodesic for W 2 ”generalized geodesic” 5

  11. Convexity under generalized displacements ◮ Generalized displacement convexity Definition: F is convex under generalized displacement (u.g.d.) if for any µ in P ac 2 ( R d ) , the function φ ∈ H �→ F ( ∇ φ # µ ) is convex. µ t = ((1 − t )id + t ∇ φ ) # µ µ t = ((1 − t ) ∇ φ 0 + t ∇ φ 1 ) # µ geodesic for W 2 ”generalized geodesic” Theorem: V, W : R d → R are convex functions = ⇒ E is convex u.g.d r d U ( r − d ) is convex non-increasing, U (0) = 0 = ⇒ U is convex u.g.d [McCann ’94] 5

  12. Convexity under generalized displacements ◮ Generalized displacement convexity Definition: F is convex under generalized displacement (u.g.d.) if for any µ in P ac 2 ( R d ) , the function φ ∈ H �→ F ( ∇ φ # µ ) is convex. µ t = ((1 − t )id + t ∇ φ ) # µ µ t = ((1 − t ) ∇ φ 0 + t ∇ φ 1 ) # µ geodesic for W 2 ”generalized geodesic” Theorem: V, W : R d → R are convex functions = ⇒ E is convex u.g.d r d U ( r − d ) is convex non-increasing, U (0) = 0 = ⇒ U is convex u.g.d [McCann ’94] ◮ Proof: Non-smooth change of variable formula: � � E ( ∇ φ # ρ ) = V ( ∇ φ ( x )) ρ ( x ) d x + W ( ∇ φ ( x ) − ∇ φ ( z )) ρ ( z ) ρ ( y ) d x d y 5

  13. Convexity under generalized displacements ◮ Generalized displacement convexity Definition: F is convex under generalized displacement (u.g.d.) if for any µ in P ac 2 ( R d ) , the function φ ∈ H �→ F ( ∇ φ # µ ) is convex. µ t = ((1 − t )id + t ∇ φ ) # µ µ t = ((1 − t ) ∇ φ 0 + t ∇ φ 1 ) # µ geodesic for W 2 ”generalized geodesic” Theorem: V, W : R d → R are convex functions = ⇒ E is convex u.g.d r d U ( r − d ) is convex non-increasing, U (0) = 0 = ⇒ U is convex u.g.d [McCann ’94] ◮ Proof: Non-smooth change of variable formula: � � E ( ∇ φ # ρ ) = V ( ∇ φ ( x )) ρ ( x ) d x + W ( ∇ φ ( x ) − ∇ φ ( z )) ρ ( z ) ρ ( y ) d x d y � � ρ ( x ) � U ( ∇ φ # ρ ) = U MA[ φ ]( x ) d x MA[ φ ]( x ) := det(D 2 φ ( x )) MA[ φ ]( x ) Minkowski determinant inequality: A ∈ SDP( R d ) → det( A ) 1 /d is concave 5

  14. Heat equation as a Wasserstein gradient flow ∂ρ ρ ( t, . ) ∈ P ac ( R d ) ρ (0 , . ) = ρ 0 Heat equation ∂t = ∆ ρ �∇ ρ ( x ) � 2 d x . ◮ Solution ρ ( t, . ) = gradient flow in L 2 ( R d ) of D ( ρ ) := 1 � 2 6

  15. Heat equation as a Wasserstein gradient flow ∂ρ ρ ( t, . ) ∈ P ac ( R d ) ρ (0 , . ) = ρ 0 Heat equation ∂t = ∆ ρ �∇ ρ ( x ) � 2 d x . ◮ Solution ρ ( t, . ) = gradient flow in L 2 ( R d ) of D ( ρ ) := 1 � 2 Time-discretization using an implicit Euler scheme: for τ > 0 , 1 ρ τ 2 τ � ρ τ k − σ � 2 L 2 ( R d ) + D ( σ ) . k +1 = arg min σ ∈P ac ( R d ) 6

  16. Heat equation as a Wasserstein gradient flow ∂ρ ρ ( t, . ) ∈ P ac ( R d ) ρ (0 , . ) = ρ 0 Heat equation ∂t = ∆ ρ �∇ ρ ( x ) � 2 d x . ◮ Solution ρ ( t, . ) = gradient flow in L 2 ( R d ) of D ( ρ ) := 1 � 2 Time-discretization using an implicit Euler scheme: for τ > 0 , 1 ρ τ 2 τ � ρ τ k − σ � 2 L 2 ( R d ) + D ( σ ) . k +1 = arg min σ ∈P ac ( R d ) ◮ Jordan, Kinderleherer, Otto: the heat equation is a gradient flow, for W 2 ( R d ) , of � the functional U ( ρ ) := ρ ( x ) log ρ ( x ) d x = − entropy of ρ . 6

  17. Heat equation as a Wasserstein gradient flow ∂ρ ρ ( t, . ) ∈ P ac ( R d ) ρ (0 , . ) = ρ 0 Heat equation ∂t = ∆ ρ �∇ ρ ( x ) � 2 d x . ◮ Solution ρ ( t, . ) = gradient flow in L 2 ( R d ) of D ( ρ ) := 1 � 2 Time-discretization using an implicit Euler scheme: for τ > 0 , 1 ρ τ 2 τ � ρ τ k − σ � 2 L 2 ( R d ) + D ( σ ) . k +1 = arg min σ ∈P ac ( R d ) ◮ Jordan, Kinderleherer, Otto: the heat equation is a gradient flow, for W 2 ( R d ) , of � the functional U ( ρ ) := ρ ( x ) log ρ ( x ) d x = − entropy of ρ . Corresponding time-discrete scheme: k , σ ) 2 + U ( σ ) . 1 ρ τ 2 τ W 2 ( ρ τ k +1 = arg min σ ∈P ( R d ) 6

  18. Heat equation as a Wasserstein gradient flow ∂ρ ρ ( t, . ) ∈ P ac ( R d ) ρ (0 , . ) = ρ 0 Heat equation ∂t = ∆ ρ �∇ ρ ( x ) � 2 d x . ◮ Solution ρ ( t, . ) = gradient flow in L 2 ( R d ) of D ( ρ ) := 1 � 2 Time-discretization using an implicit Euler scheme: for τ > 0 , 1 ρ τ 2 τ � ρ τ k − σ � 2 L 2 ( R d ) + D ( σ ) . k +1 = arg min σ ∈P ac ( R d ) ◮ Jordan, Kinderleherer, Otto: the heat equation is a gradient flow, for W 2 ( R d ) , of � the functional U ( ρ ) := ρ ( x ) log ρ ( x ) d x = − entropy of ρ . Corresponding time-discrete scheme: k , σ ) 2 + U ( σ ) . 1 ρ τ 2 τ W 2 ( ρ τ k +1 = arg min σ ∈P ( R d ) ◮ Convergence analysis for the linear Fokker-Planck equation. [Jordan, Kinderlehrer, Otto ’99] 6

  19. Diffusive PDEs as Wasserstein gradient flows ◮ Generalization to some evolution PDEs, where ρ ( t, . ) ∈ P ac ( R d ) ∂ρ ∂t = div [ ρ ∇ ( U ′ ( ρ ) + V + W ∗ ρ )] ρ (0 , . ) = ρ 0 ( ∗ ) 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend