convex discretization of functionals involving the monge
play

Convex discretization of functionals involving the Monge-Amp` ere - PowerPoint PPT Presentation

Convex discretization of functionals involving the Monge-Amp` ere operator Quentin M erigot CNRS / Universit e Paris-Dauphine Joint work with J.D. Benamou, G. Carlier and E. Oudet Workshop on Optimal Transport in the Applied Sciences


  1. Convex discretization of functionals involving the Monge-Amp` ere operator Quentin M´ erigot CNRS / Universit´ e Paris-Dauphine Joint work with J.D. Benamou, G. Carlier and ´ E. Oudet Workshop on Optimal Transport in the Applied Sciences December 8-12, 2014 — RICAM, Linz 1

  2. 1. Motivation: Gradient flows in Wasserstein space 2

  3. Background: Optimal transport R d p 2 � x � 2 d µ ( x ) < + ∞} P 2 ( R d ) = { µ ∈ P ( R d ); � ν P ac 2 ( R d ) = P 2 ( R d ) ∩ L 1 ( R d ) π ◮ Wasserstein distance between µ, ν ∈ P 2 ( R d ) , p 1 Γ( µ, ν ) := { π ∈ P ( R d × R d ); p 1# π = µ, p 2# π = ν } R d µ � x − y � 2 d π ( x, y ) . Definition: W 2 � 2 ( µ, ν ) := min π ∈ Γ( µ,ν ) 3

  4. Background: Optimal transport R d p 2 � x � 2 d µ ( x ) < + ∞} P 2 ( R d ) = { µ ∈ P ( R d ); � ν P ac 2 ( R d ) = P 2 ( R d ) ∩ L 1 ( R d ) π ◮ Wasserstein distance between µ, ν ∈ P 2 ( R d ) , p 1 Γ( µ, ν ) := { π ∈ P ( R d × R d ); p 1# π = µ, p 2# π = ν } R d µ � x − y � 2 d π ( x, y ) . Definition: W 2 � 2 ( µ, ν ) := min π ∈ Γ( µ,ν ) Def: K := finite convex functions on R d ◮ Relation to convex functions: 3

  5. Background: Optimal transport R d p 2 � x � 2 d µ ( x ) < + ∞} P 2 ( R d ) = { µ ∈ P ( R d ); � ν P ac 2 ( R d ) = P 2 ( R d ) ∩ L 1 ( R d ) π ◮ Wasserstein distance between µ, ν ∈ P 2 ( R d ) , p 1 Γ( µ, ν ) := { π ∈ P ( R d × R d ); p 1# π = µ, p 2# π = ν } R d µ � x − y � 2 d π ( x, y ) . Definition: W 2 � 2 ( µ, ν ) := min π ∈ Γ( µ,ν ) Def: K := finite convex functions on R d ◮ Relation to convex functions: Theorem (Brenier): Given µ ∈ P ac 2 ( R d ) the map φ ∈ K �→ ∇ φ # µ ∈ P 2 ( R d ) is surjective and moreover, R d � x − ∇ φ ( x ) � 2 d µ ( x ) W 2 � 2 ( µ, ∇ φ # µ ) = [Brenier ’91] 3

  6. Background: Optimal transport R d p 2 � x � 2 d µ ( x ) < + ∞} P 2 ( R d ) = { µ ∈ P ( R d ); � ν P ac 2 ( R d ) = P 2 ( R d ) ∩ L 1 ( R d ) π ◮ Wasserstein distance between µ, ν ∈ P 2 ( R d ) , p 1 Γ( µ, ν ) := { π ∈ P ( R d × R d ); p 1# π = µ, p 2# π = ν } R d µ � x − y � 2 d π ( x, y ) . Definition: W 2 � 2 ( µ, ν ) := min π ∈ Γ( µ,ν ) Def: K := finite convex functions on R d ◮ Relation to convex functions: Theorem (Brenier): Given µ ∈ P ac 2 ( R d ) the map φ ∈ K �→ ∇ φ # µ ∈ P 2 ( R d ) is surjective and moreover, R d � x − ∇ φ ( x ) � 2 d µ ( x ) W 2 � 2 ( µ, ∇ φ # µ ) = [Brenier ’91] Given any µ ∈ P ac 2 ( R d ) , we get a ”parameterization” of P 2 ( R d ) , as ”seen” from µ . 3

  7. Motivation 1: Crowd Motion Under Congestion ◮ JKO scheme for crowd motion with hard congestion: [Maury-Roudneff-Chupin-Santambrogio 10] 2 τ W 2 1 ρ τ 2 ( ρ τ k , σ ) + E ( σ ) + U ( σ ) ( ∗ ) k +1 = min σ ∈P 2 ( X ) where X ⊆ R d is convex and bounded, and � 0 if d ν = f d H d , f ≤ 1 � E ( ν ) := R d V ( x ) d ν ( x ) U ( ν ) := + ∞ if not congestion potential energy 4

  8. Motivation 1: Crowd Motion Under Congestion ◮ JKO scheme for crowd motion with hard congestion: [Maury-Roudneff-Chupin-Santambrogio 10] 2 τ W 2 1 ρ τ 2 ( ρ τ k , σ ) + E ( σ ) + U ( σ ) ( ∗ ) k +1 = min σ ∈P 2 ( X ) where X ⊆ R d is convex and bounded, and � 0 if d ν = f d H d , f ≤ 1 � E ( ν ) := R d V ( x ) d ν ( x ) U ( ν ) := + ∞ if not congestion potential energy ◮ Assuming σ = ∇ φ # ρ τ k with φ convex, the Wasserstein term becomes explicit: 1 R d � x − ∇ φ ( x ) � 2 ρ τ k ( x ) d x + E ( ∇ φ # ρ τ k ) + U ( ∇ φ # ρ τ � ( ∗ ) ⇐ ⇒ min φ k ) 2 τ On the other hand, the constraint becomes strongly nonlinear: U ( ∇ φ # ρ τ ⇒ det D 2 φ ( x ) ≥ ρ k ( x ) k ) < + ∞ ⇐ 4

  9. Motivation 2: Nonlinear Diffusion ∂ρ ρ (0 , . ) = ρ 0 ∂t = div [ ρ ∇ ( U ′ ( ρ ) + V + W ∗ ρ )] ( ∗ ) ρ ( t, . ) ∈ P ac ( R d ) 5

  10. Motivation 2: Nonlinear Diffusion ∂ρ ρ (0 , . ) = ρ 0 ∂t = div [ ρ ∇ ( U ′ ( ρ ) + V + W ∗ ρ )] ( ∗ ) ρ ( t, . ) ∈ P ac ( R d ) ◮ Formally, ( ∗ ) can be seen as the W 2 -gradient flow of U + E , with �  R d U ( f ( x )) d x if d ν = f d H d  U ( ν ) := ⇒ entropy internal energy, ex: U ( r ) = r log r = + ∞ if not  � � E ( ν ) := R d V ( x ) d ν ( x ) + R d W ( x − y ) d[ ν ⊗ ν ]( x, y ) potential energy interaction energy 5

  11. Motivation 2: Nonlinear Diffusion ∂ρ ρ (0 , . ) = ρ 0 ∂t = div [ ρ ∇ ( U ′ ( ρ ) + V + W ∗ ρ )] ( ∗ ) ρ ( t, . ) ∈ P ac ( R d ) ◮ Formally, ( ∗ ) can be seen as the W 2 -gradient flow of U + E , with �  R d U ( f ( x )) d x if d ν = f d H d  U ( ν ) := ⇒ entropy internal energy, ex: U ( r ) = r log r = + ∞ if not  � � E ( ν ) := R d V ( x ) d ν ( x ) + R d W ( x − y ) d[ ν ⊗ ν ]( x, y ) potential energy interaction energy ◮ JKO time discrete scheme: for τ > 0 , [Jordan-Kinderlehrer-Otto ’98] k , σ ) 2 + U ( σ ) + E ( σ ) 1 ρ τ 2 τ W 2 ( ρ τ k +1 = arg min σ ∈P ( R d ) 5

  12. Motivation 2: Nonlinear Diffusion ∂ρ ρ (0 , . ) = ρ 0 ∂t = div [ ρ ∇ ( U ′ ( ρ ) + V + W ∗ ρ )] ( ∗ ) ρ ( t, . ) ∈ P ac ( R d ) ◮ Formally, ( ∗ ) can be seen as the W 2 -gradient flow of U + E , with �  R d U ( f ( x )) d x if d ν = f d H d  U ( ν ) := ⇒ entropy internal energy, ex: U ( r ) = r log r = + ∞ if not  � � E ( ν ) := R d V ( x ) d ν ( x ) + R d W ( x − y ) d[ ν ⊗ ν ]( x, y ) potential energy interaction energy ◮ JKO time discrete scheme: for τ > 0 , [Jordan-Kinderlehrer-Otto ’98] k , σ ) 2 + U ( σ ) + E ( σ ) 1 ρ τ 2 τ W 2 ( ρ τ k +1 = arg min σ ∈P ( R d ) − → Many applications: porous medium equation, cell movement via chemotaxis, Cournot-Nash equilibra, etc. 5

  13. Displacement Convex Setting For X convex bounded and µ ∈ P ac ( X ) , 2 τ W 2 1 2 ( µ, ν ) + E ( ν ) + U ( ν ) min ν ∈P ( X ) spt( ν ) ⊆ X 6

  14. Displacement Convex Setting For X convex bounded and µ ∈ P ac ( X ) , K X := { φ convex ; ∇ φ ∈ X } 2 τ W 2 1 2 ( µ, ν ) + E ( ν ) + U ( ν ) min ν ∈P ( X ) 2 τ W 2 1 ⇐ ⇒ 2 ( µ, ∇ φ # µ ) + U ( ∇ φ # µ ) + E ( ∇ φ # µ ) min φ ∈K X ( ∗ X ) 6

  15. Displacement Convex Setting For X convex bounded and µ ∈ P ac ( X ) , K X := { φ convex ; ∇ φ ∈ X } 2 τ W 2 1 2 ( µ, ν ) + E ( ν ) + U ( ν ) min ν ∈P ( X ) 2 τ W 2 1 ⇐ ⇒ 2 ( µ, ∇ φ # µ ) + U ( ∇ φ # µ ) + E ( ∇ φ # µ ) min φ ∈K X ( ∗ X ) � d ν When is the minimization problem ( ∗ X ) convex ? � � U ( ν ) := R d U d x d H d � E ( ν ) := R d ( V + W ∗ ν ) d ν 6

  16. Displacement Convex Setting For X convex bounded and µ ∈ P ac ( X ) , K X := { φ convex ; ∇ φ ∈ X } 2 τ W 2 1 2 ( µ, ν ) + E ( ν ) + U ( ν ) min ν ∈P ( X ) 2 τ W 2 1 ⇐ ⇒ 2 ( µ, ∇ φ # µ ) + U ( ∇ φ # µ ) + E ( ∇ φ # µ ) min φ ∈K X ( ∗ X ) � d ν When is the minimization problem ( ∗ X ) convex ? � � U ( ν ) := R d U d x d H d � E ( ν ) := R d ( V + W ∗ ν ) d ν Theorem: ( ∗ X ) is convex if (H1) V, W : R d → R are convex functions, (H2) r d U ( r − d ) is convex non-increasing, U (0) = 0 . [McCann ’94] � � ρ ( x ) � MA[ φ ]( x ) := det(D 2 φ ( x )) NB: U ( ∇ φ # ρ ) = U MA[ φ ]( x ) d x MA[ φ ]( x ) 6

  17. Displacement Convex Setting For X convex bounded and µ ∈ P ac ( X ) , K X := { φ convex ; ∇ φ ∈ X } 2 τ W 2 1 2 ( µ, ν ) + E ( ν ) + U ( ν ) min ν ∈P ( X ) 2 τ W 2 1 ⇐ ⇒ 2 ( µ, ∇ φ # µ ) + U ( ∇ φ # µ ) + E ( ∇ φ # µ ) min φ ∈K X ( ∗ X ) � d ν When is the minimization problem ( ∗ X ) convex ? � � U ( ν ) := R d U d x d H d � E ( ν ) := R d ( V + W ∗ ν ) d ν Theorem: ( ∗ X ) is convex if (H1) V, W : R d → R are convex functions, (H2) r d U ( r − d ) is convex non-increasing, U (0) = 0 . [McCann ’94] � � ρ ( x ) � MA[ φ ]( x ) := det(D 2 φ ( x )) NB: U ( ∇ φ # ρ ) = U MA[ φ ]( x ) d x MA[ φ ]( x ) Goal: convergent and convex spatial discretization of ( ∗ X ) & numerical applications. 6

  18. Numerical applications of the JKO scheme ◮ Numerical applications of the (variational) JKO scheme are still limited: 7

  19. Numerical applications of the JKO scheme ◮ Numerical applications of the (variational) JKO scheme are still limited: 1D : monotone rearrangement e.g. [Kinderleherer-Walkington 99] [Blanchet-Calvez-Carrillo 08] [Agueh-Bowles 09] 7

  20. Numerical applications of the JKO scheme ◮ Numerical applications of the (variational) JKO scheme are still limited: 1D : monotone rearrangement e.g. [Kinderleherer-Walkington 99] [Blanchet-Calvez-Carrillo 08] [Agueh-Bowles 09] 2D: optimal transport plans → diffeomorphisms [Carrillo-Moll 09] U = hard congestion term [Maury-Roudneff-Chupin-Santambrogio 10] 7

  21. Numerical applications of the JKO scheme ◮ Numerical applications of the (variational) JKO scheme are still limited: 1D : monotone rearrangement e.g. [Kinderleherer-Walkington 99] [Blanchet-Calvez-Carrillo 08] [Agueh-Bowles 09] 2D: optimal transport plans → diffeomorphisms [Carrillo-Moll 09] U = hard congestion term [Maury-Roudneff-Chupin-Santambrogio 10] ◮ Our goal is to approximate a JKO step numerically, in dimension ≥ 2 : For X convex bounded and µ ∈ P ac ( X ) , 2 τ W 2 1 2 ( µ, ν ) + E ( ν ) + U ( ν ) ( ∗ X ) min ν ∈P ( X ) 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend