the largest eigenvalue of finite rank deformation of
play

The largest eigenvalue of finite rank deformation of large Wigner - PowerPoint PPT Presentation

The largest eigenvalue of finite rank deformation of large Wigner matrices: convergence and non-universality of the fluctuations M. Capitaine, C. Donati-Martin, D. F eral I M T Univ Toulouse 3 and CNRS, Equipe de Statistique et Probabilit


  1. The largest eigenvalue of finite rank deformation of large Wigner matrices: convergence and non-universality of the fluctuations M. Capitaine, C. Donati-Martin, D. F´ eral I M T Univ Toulouse 3 and CNRS, Equipe de Statistique et Probabilit´ es UPMC Univ Paris 06 and CNRS, Laboratoire de Probabilit´ es et Mod` eles Al´ eatoires

  2. √ Step 1: Inclusion of the spectrum of M N = W N / N + A N P [ Spect ( M N ) ⊂ K σ ( θ 1 , · · · , θ J ) + ( − ε ; ε ) for large N ] = 1 . � � � � K σ ( θ 1 , · · · , θ J ) := ρ θ J ; · · · ; ρ θ J − J − σ +1 ∪ [ − 2 σ ; 2 σ ] ∪ ρ θ J + σ ; · · · ; ρ θ 1 . ρ θ i = θ i + σ 2 θ i if | θ i | > σ .

  3. √ Step 1: Inclusion of the spectrum of M N = W N / N + A N P [ Spect ( M N ) ⊂ K σ ( θ 1 , · · · , θ J ) + ( − ε ; ε ) for large N ] = 1 . � � � � K σ ( θ 1 , · · · , θ J ) := ρ θ J ; · · · ; ρ θ J − J − σ +1 ∪ [ − 2 σ ; 2 σ ] ∪ ρ θ J + σ ; · · · ; ρ θ 1 . � ρ θ i = θ i + σ 2 1 1 θ i if | θ i | > σ . θ i = g σ ( ρ θ i ) , g σ ( z ) = z − t d µ sc ( t ).

  4. √ Step 1: Inclusion of the spectrum of M N = W N / N + A N P [ Spect ( M N ) ⊂ K σ ( θ 1 , · · · , θ J ) + ( − ε ; ε ) for large N ] = 1 . � � � � K σ ( θ 1 , · · · , θ J ) := ρ θ J ; · · · ; ρ θ J − J − σ +1 ∪ [ − 2 σ ; 2 σ ] ∪ ρ θ J + σ ; · · · ; ρ θ 1 . � ρ θ i = θ i + σ 2 1 1 θ i if | θ i | > σ . θ i = g σ ( ρ θ i ) , g σ ( z ) = z − t d µ sc ( t ). −∞ − 2 σ + ∞ x ρ θ J 2 σ ρ θ 2 ρ θ 1 − σ + ∞ ր ր θ 1 ր 1 θ J θ 2 g σ ( x ) ր ր −∞ σ

  5. Step 2: Exact separation phenomenon 1 1 [ a , b ] gap in Spect( M N ) ← → [ g σ ( a ) , g σ ( b ) ] gap in Spect( A N ) ✲ 1 1 σ θ 3 g σ ( b ) θ 2 θ 1 g σ ( a ) � �� � � �� � N-l eigenvalues of A N l eigenvalues of A N ✲ 2 σ ρ θ 3 a b ρ θ 2 ρ θ 1 � �� � � �� � N-l eigenvalues of M N l eigenvalues of M N

  6. Theorem Exact separation phenomenon K σ ( θ 1 , · · · , θ J ) := � � � � ρ θ J ; · · · ; ρ θ J − J − σ +1 ∪ [ − 2 σ ; 2 σ ] ∪ ρ θ J + σ ; · · · ; ρ θ 1 . c K σ ( θ 1 , . . . , θ J ) , i N ∈ { 0 , . . . , N } s.t [ a , b ] ⊂ 1 1 λ i N +1 ( A N ) < and λ i N ( A N ) > g σ ( a ) g σ ( b ) ( λ 0 := + ∞ and λ N +1 := −∞ ). Then P [ λ i N +1 ( M N ) < a and λ i N ( M N ) > b , for large N ] = 1 .

  7. Assume that θ 1 > σ . λ 1 ( M N ) → ρ θ 1 a.s.?

  8. Assume that θ 1 > σ . λ 1 ( M N ) → ρ θ 1 a.s.? P [ Spect ( M N ) ⊂ K σ ( θ 1 , · · · , θ J ) + ( − ε ; ε ) for large N ] = 1 . � � � � K σ ( θ 1 , · · · , θ J ) := ρ θ J ; · · · ; ρ θ J − J − σ +1 ∪ [ − 2 σ ; 2 σ ] ∪ ρ θ J + σ ; · · · ; ρ θ 1 . ⇒ P [ λ 1 ( M N ) < ρ θ 1 + ǫ for large N ] = 1 . =

  9. Assume that θ 1 > σ . λ 1 ( M N ) → ρ θ 1 a.s.? P [ Spect ( M N ) ⊂ K σ ( θ 1 , · · · , θ J ) + ( − ε ; ε ) for large N ] = 1 . � � � � K σ ( θ 1 , · · · , θ J ) := ρ θ J ; · · · ; ρ θ J − J − σ +1 ∪ [ − 2 σ ; 2 σ ] ∪ ρ θ J + σ ; · · · ; ρ θ 1 . ⇒ P [ λ 1 ( M N ) < ρ θ 1 + ǫ for large N ] = 1 . = By the exact separation phenomenon with [ a ; b ] = [ θ 2 + η ; θ 1 − η ], 1 ( θ 1 − η = g σ ( ρ θ 1 − ǫ ) ) P [ λ 1 ( M N ) > ρ θ 1 − ǫ, for large N ] = 1 .

  10. Assume that θ 1 > σ . λ 1 ( M N ) → ρ θ 1 a.s.? P [ Spect ( M N ) ⊂ K σ ( θ 1 , · · · , θ J ) + ( − ε ; ε ) for large N ] = 1 . � � � � K σ ( θ 1 , · · · , θ J ) := ρ θ J ; · · · ; ρ θ J − J − σ +1 ∪ [ − 2 σ ; 2 σ ] ∪ ρ θ J + σ ; · · · ; ρ θ 1 . ⇒ P [ λ 1 ( M N ) < ρ θ 1 + ǫ for large N ] = 1 . = By the exact separation phenomenon with [ a ; b ] = [ θ 2 + η ; θ 1 − η ], 1 ( θ 1 − η = g σ ( ρ θ 1 − ǫ ) ) P [ λ 1 ( M N ) > ρ θ 1 − ǫ, for large N ] = 1 . = ⇒ P [ ρ θ 1 − ǫ < λ 1 ( M N ) < ρ θ 1 + ǫ for large N ] = 1 .

  11. Theorem A N = diag ( θ, 0 , · · · , 0) with θ > σ . Then � � � � √ → (1 − σ 2 D N λ 1 ( M N ) − ρ θ − θ 2 ) µ ∗ N (0 , v θ ) . � m 4 − 3 σ 4 � σ 4 v θ = t + t θ 2 − σ 2 θ 2 4 2 with t = 4 (resp. t = 2 ) if W N is real (resp. complex) and � x 4 d µ ( x ) . m 4 := ⇒ NON-UNIVERSALITY OF THE FLUCTUATIONS OF λ 1 ( M N ) since they do depend on µ

  12. Theorem A N = diag ( θ, 0 , · · · , 0) with θ > σ . Then � � � � √ → (1 − σ 2 D N λ 1 ( M N ) − ρ θ − θ 2 ) µ ∗ N (0 , v θ ) . � m 4 − 3 σ 4 � σ 4 v θ = t + t θ 2 − σ 2 θ 2 4 2 with t = 4 (resp. t = 2 ) if W N is real (resp. complex) and � x 4 d µ ( x ) . m 4 := ⇒ NON-UNIVERSALITY OF THE FLUCTUATIONS OF λ 1 ( M N ) since they do depend on µ In the other particular case ( A N ) ij = θ N ∀ 1 ≤ i , j ≤ N , µ symmetric with sub-gaussian moments, D. F´ eral and S. P´ ech´ e: if θ > σ, then � � � √ D 1 − σ 2 → N (0 , σ 2 N λ 1 ( M N ) − ρ θ − θ ), σ θ = σ θ 2 .

  13. � M N − 1 : the N − 1 × N − 1 matrix obtained from M N removing the √ N − 1 � N first row and the first column. ⇒ M N − 1 is a non-Deformed √ Wigner matrix associated with the measure µ . t (( M N ) 21 , . . . , ( M N ) N 1 ) . ˇ M · 1 =   θ + ( W N ) 11 ˇ M ∗ √ · 1 N   M N =   ˇ � M · 1 M N − 1 M N − 1 , ˇ � M · 1 , ( W N ) 11 are independent.

  14. � M N − 1 : the N − 1 × N − 1 matrix obtained from M N removing the √ N − 1 � N first row and the first column. ⇒ M N − 1 is a non-Deformed √ Wigner matrix associated with the measure µ . t (( M N ) 21 , . . . , ( M N ) N 1 ) . ˇ M · 1 =   θ + ( W N ) 11 ˇ M ∗ √ · 1 N   M N =   ˇ � M · 1 M N − 1 M N − 1 , ˇ � M · 1 , ( W N ) 11 are independent. V = t ( v 1 , . . . , v N ) eigenvector relative to λ 1 := λ 1 ( M N ). t ( v 2 , . . . , v N ) � V =

  15. � M N − 1 : the N − 1 × N − 1 matrix obtained from M N removing the √ N − 1 � N first row and the first column. ⇒ M N − 1 is a non-Deformed √ Wigner matrix associated with the measure µ . t (( M N ) 21 , . . . , ( M N ) N 1 ) . ˇ M · 1 =   θ + ( W N ) 11 ˇ M ∗ √ · 1 N   M N =   ˇ � M · 1 M N − 1 M N − 1 , ˇ � M · 1 , ( W N ) 11 are independent. V = t ( v 1 , . . . , v N ) eigenvector relative to λ 1 := λ 1 ( M N ). t ( v 2 , . . . , v N ) � V = � λ 1 v 1 = ( θ + ( W N ) 11 N ) v 1 + ˇ · 1 � M ∗ V √ M N V = λ 1 V ⇐ ⇒ V = v 1 ˇ λ 1 � M · 1 + � M N − 1 � V

  16. 0 < δ < ρ θ − 2 σ . ( ρ θ > 2 σ ) � 4 � λ 1 ( � M N − 1 ) ≤ 2 σ + δ ; λ N − 1 ( � Ω N = M N − 1 ) ≥ − 2 σ − δ ; λ 1 ( M N ) ≥ ρ θ − δ lim N → + ∞ P (Ω N ) = 1 .

  17. 0 < δ < ρ θ − 2 σ . ( ρ θ > 2 σ ) � 4 � λ 1 ( � M N − 1 ) ≤ 2 σ + δ ; λ N − 1 ( � Ω N = M N − 1 ) ≥ − 2 σ − δ ; λ 1 ( M N ) ≥ ρ θ − δ lim N → + ∞ P (Ω N ) = 1 . On Ω N , � G ( λ 1 ) := ( λ 1 I N − 1 − � M N − 1 ) − 1

  18. 0 < δ < ρ θ − 2 σ . ( ρ θ > 2 σ ) � 4 � λ 1 ( � M N − 1 ) ≤ 2 σ + δ ; λ N − 1 ( � Ω N = M N − 1 ) ≥ − 2 σ − δ ; λ 1 ( M N ) ≥ ρ θ − δ lim N → + ∞ P (Ω N ) = 1 . On Ω N , � G ( λ 1 ) := ( λ 1 I N − 1 − � M N − 1 ) − 1 � λ 1 v 1 = ( θ + ( W N ) 11 N ) v 1 + ˇ M ∗ · 1 � V √ V = v 1 ˇ λ 1 � M · 1 + � M N − 1 � V � θ v 1 + ( W N ) 11 N v 1 + v 1 ˇ · 1 � G ( λ 1 ) ˇ M ∗ λ 1 v 1 = M · 1 . √ ⇔ � v 1 � G ( λ 1 ) ˇ V = M · 1 .

  19. 0 < δ < ρ θ − 2 σ . ( ρ θ > 2 σ ) � 4 � λ 1 ( � M N − 1 ) ≤ 2 σ + δ ; λ N − 1 ( � Ω N = M N − 1 ) ≥ − 2 σ − δ ; λ 1 ( M N ) ≥ ρ θ − δ lim N → + ∞ P (Ω N ) = 1 . On Ω N , � G ( λ 1 ) := ( λ 1 I N − 1 − � M N − 1 ) − 1 � λ 1 v 1 = ( θ + ( W N ) 11 N ) v 1 + ˇ M ∗ · 1 � V √ V = v 1 ˇ λ 1 � M · 1 + � M N − 1 � V � θ v 1 + ( W N ) 11 N v 1 + v 1 ˇ · 1 � G ( λ 1 ) ˇ M ∗ λ 1 v 1 = M · 1 . √ ⇔ � v 1 � G ( λ 1 ) ˇ V = M · 1 . ⇒ λ 1 = θ + ( W N ) 11 + ˇ G ( λ 1 ) ˇ M ∗ · 1 � √ M · 1 N

  20. √ √ M · 1 − σ 2 N ( ˇ G ( λ 1 ) ˇ M ∗ · 1 � N ( λ 1 − ρ θ ) = ( W N ) 11 + θ )

  21. √ √ M · 1 − σ 2 N ( ˇ G ( λ 1 ) ˇ M ∗ · 1 � N ( λ 1 − ρ θ ) = ( W N ) 11 + θ ) √ M · 1 − σ 2 N ( ˇ G ( ρ θ ) ˇ M ∗ · 1 � = ( W N ) 11 + θ ) � � √ N ˇ ˇ M ∗ G ( λ 1 ) − � � + G ( ρ θ ) M · 1 · 1

  22. √ √ M · 1 − σ 2 N ( ˇ G ( λ 1 ) ˇ M ∗ · 1 � N ( λ 1 − ρ θ ) = ( W N ) 11 + θ ) √ M · 1 − σ 2 N ( ˇ G ( ρ θ ) ˇ M ∗ · 1 � = ( W N ) 11 + θ ) � √ � σ 2 + σ 2 − θ 2 + o (1) N ( λ 1 − ρ θ )

  23. √ √ M · 1 − σ 2 N ( ˇ G ( λ 1 ) ˇ M ∗ · 1 � N ( λ 1 − ρ θ ) = ( W N ) 11 + θ ) √ N ( ˇ · 1 � G ( ρ θ ) ˇ M · 1 − σ 2 tr N − 1 � M ∗ = ( W N ) 11 + G ( ρ θ )) � √ � σ 2 N ( λ 1 − ρ θ )+ o (1) + σ 2 − θ 2 + o (1) (using g σ ( ρ θ ) = 1 θ )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend