asymmetry helps eigenvalue and eigenvector analyses of
play

Asymmetry Helps: Eigenvalue and Eigenvector Analyses of - PowerPoint PPT Presentation

Asymmetry Helps: Eigenvalue and Eigenvector Analyses of Asymmetrically Perturbed Low-Rank Matrices Yuxin Chen Electrical Engineering, Princeton University Jianqing Fan Chen Cheng Princeton ORFE PKU Math Eigenvalue / eigenvector estimation M


  1. Asymmetry Helps: Eigenvalue and Eigenvector Analyses of Asymmetrically Perturbed Low-Rank Matrices Yuxin Chen Electrical Engineering, Princeton University

  2. Jianqing Fan Chen Cheng Princeton ORFE PKU Math

  3. Eigenvalue / eigenvector estimation M ⋆ : truth • A rank-1 matrix: M ⋆ = λ ⋆ u ⋆ u ⋆ ⊤ ∈ R n × n 3/ 21

  4. Eigenvalue / eigenvector estimation + M ⋆ : truth H : noise • A rank-1 matrix: M ⋆ = λ ⋆ u ⋆ u ⋆ ⊤ ∈ R n × n • Observed noisy data: M = M ⋆ + H 3/ 21

  5. Eigenvalue / eigenvector estimation + M ⋆ : truth H : noise • A rank-1 matrix: M ⋆ = λ ⋆ u ⋆ u ⋆ ⊤ ∈ R n × n • Observed noisy data: M = M ⋆ + H • Goal: estimate eigenvalue λ ⋆ and eigenvector u ⋆ 3/ 21

  6. Non-symmetric noise matrix + M = M ⋆ = λ ⋆ u ⋆ u ⋆ ⊤ H : asymmetric matrix This may arise when, e.g., we have 2 samples for each entry of M ⋆ and arrange them in an asymmetric manner 4/ 21

  7. A natural estimation strategy: SVD + M = M ⋆ = λ ⋆ u ⋆ u ⋆ ⊤ H : asymmetric matrix • Use leading singular value λ svd of M to estimate λ ⋆ • Use leading left singular vector of M to estimate u ⋆ 5/ 21

  8. A less popular strategy: eigen-decomposition + M = M ⋆ = λ ⋆ u ⋆ u ⋆ ⊤ H : asymmetric matrix • Use leading singular value λ svd eigenvalue λ eigs of M to estimate λ ⋆ • Use leading singular vector eigenvector of M to estimate u ⋆ 6/ 21

  9. SVD vs. eigen-decomposition For asymmetric matrices: • Numerical stability SVD eigen-decomposition > 7/ 21

  10. SVD vs. eigen-decomposition For asymmetric matrices: • Numerical stability SVD eigen-decomposition > • (Folklore?) Statistical accuracy SVD ≍ eigen-decomposition 7/ 21

  11. SVD vs. eigen-decomposition For asymmetric matrices: • Numerical stability SVD eigen-decomposition > • (Folklore?) Statistical accuracy SVD ≍ eigen-decomposition Shall we always prefer SVD over eigen-decomposition? 7/ 21

  12. A curious numerical experiment: Gaussian noise M = u ⋆ u ⋆ ⊤ { H i,j } : i.i.d. N (0 , σ 2 ) , σ = 1 + H ; √ n log n � �� � M ⋆ 10 0 SVD � λ svd − λ ? � � � j 6 ! 6 ? j 10 -1 10 -2 200 400 600 800 1000 1200 1400 1600 1800 2000 n 8/ 21

  13. A curious numerical experiment: Gaussian noise M = u ⋆ u ⋆ ⊤ { H i,j } : i.i.d. N (0 , σ 2 ) , σ = 1 + H ; √ n log n � �� � M ⋆ 10 0 10 0 SVD Eigen-Decomposition SVD � λ svd − λ ? � � � j 6 ! 6 ? j j 6 ! 6 ? j 10 -1 10 -1 10 -2 10 -2 � λ eigs − λ ? � . 5 � 200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000 � n n n 8/ 21

  14. A curious numerical experiment: Gaussian noise M = u ⋆ u ⋆ ⊤ { H i,j } : i.i.d. N (0 , σ 2 ) , σ = 1 + H ; √ n log n � �� � M ⋆ 10 0 10 0 10 0 SVD Eigen-Decomposition Eigen-Decomposition SVD SVD � λ svd − λ ? � � Rescaled SVD Error � j 6 ! 6 ? j j 6 ! 6 ? j j 6 ! 6 ? j 10 -1 10 -1 10 -1 � λ svd − λ ? � 2 . 5 � p n � 10 -2 10 -2 10 -2 � λ eigs − λ ? � . 5 � 200 400 600 800 1000 1200 1400 1600 1800 2000 200 200 400 400 600 600 800 800 1000 1000 1200 1200 1400 1400 1600 1600 1800 1800 2000 2000 � n n n n 8/ 21

  15. A curious numerical experiment: Gaussian noise M = u ⋆ u ⋆ ⊤ { H i,j } : i.i.d. N (0 , σ 2 ) , σ = 1 + H ; √ n log n � �� � M ⋆ 10 0 10 0 10 0 SVD Eigen-Decomposition Eigen-Decomposition SVD SVD � λ svd − λ ? � � Rescaled SVD Error � j 6 ! 6 ? j j 6 ! 6 ? j j 6 ! 6 ? j 10 -1 10 -1 10 -1 � λ svd − λ ? � 2 . 5 � p n � 10 -2 10 -2 10 -2 � λ eigs − λ ? � . 5 � 200 400 600 800 1000 1200 1400 1600 1800 2000 200 200 400 400 600 600 800 800 1000 1000 1200 1200 1400 1400 1600 1600 1800 1800 2000 2000 � n n n n � � λ eigs − λ ⋆ � � � λ svd − λ ⋆ � � ≈ 2 . 5 empirically, √ n � 8/ 21

  16. j 6 ! 6 ? j n Another numerical experiment: matrix completion � 1 p M ⋆ with prob. p, M ⋆ = u ⋆ u ⋆ ⊤ ; p = 3 log n i,j M i,j = n 0 , else ,   � ? ? ? � ? ? ? ? ? � �      � ? ? � ? ?      ? ? � ? ? �     � ? ? ? ? ?   ? � ? ? � ? 9/ 21

  17. Another numerical experiment: matrix completion � 1 p M ⋆ with prob. p, M ⋆ = u ⋆ u ⋆ ⊤ ; p = 3 log n i,j M i,j = n 0 , else , 10 0 Eigen-Decomposition SVD � λ svd − λ ? � � Rescaled SVD Error � j 6 ! 6 ? j 10 -1 � λ svd − λ ? � 2 . 5 � p n � 10 -2 � λ eigs − λ ? � . 5 � 200 400 600 800 1000 1200 1400 1600 1800 2000 � n n � λ eigs − λ ⋆ � � λ svd − λ ⋆ � � � ≈ 2 . 5 � empirically, √ n � 9/ 21

  18. Why does eigen-decomposition work so much better than SVD?

  19. Problem setup M = u ⋆ u ⋆ ⊤ + H ∈ R n × n � �� � M ⋆ • H : noise matrix ◦ independent entries: { H i,j } are independent ◦ zero mean: E [ H i,j ] = 0 ◦ variance: Var ( H i,j ) ≤ σ 2 ◦ magnitudes: P {| H i,j | ≥ B } � n − 12 11/ 21

  20. Problem setup M = u ⋆ u ⋆ ⊤ + H ∈ R n × n � �� � M ⋆ • H : noise matrix ◦ independent entries: { H i,j } are independent ◦ zero mean: E [ H i,j ] = 0 4 ◦ variance: Var ( H i,j ) ≤ σ 2 ◦ magnitudes: P {| H i,j | ≥ B } � n − 12 e i • M ⋆ obeys incoherence condition � µ k e > i U ? k 2 � i u ⋆ � � ≤ � e ⊤ max n 1 ≤ i ≤ n U ? 11/ 21

  21. Classical linear algebra results � λ svd − λ ⋆ � � � ≤ � H � ( Weyl ) � λ eigs − λ ⋆ � � � ≤ � H � ( Bauer-Fike ) 12/ 21

  22. Classical linear algebra results � λ svd − λ ⋆ � � � ≤ � H � ( Weyl ) � λ eigs − λ ⋆ � � � ≤ � H � ( Bauer-Fike ) ⇓ matrix Bernstein inequality � λ svd − λ ⋆ � � � � � σ n log n + B log n � λ eigs − λ ⋆ � � � � � σ n log n + B log n 12/ 21

  23. Classical linear algebra results � λ svd − λ ⋆ � � � ≤ � H � ( Weyl ) � λ eigs − λ ⋆ � � � ≤ � H � ( Bauer-Fike ) ⇓ matrix Bernstein inequality � λ svd − λ ⋆ � � � � � σ ( reasonably tight if � H � is large ) n log n + B log n � λ eigs − λ ⋆ � � � � � σ n log n + B log n 12/ 21

  24. Classical linear algebra results � λ svd − λ ⋆ � � � ≤ � H � ( Weyl ) � λ eigs − λ ⋆ � � � ≤ � H � ( Bauer-Fike ) ⇓ matrix Bernstein inequality � λ svd − λ ⋆ � � � � � σ ( reasonably tight if � H � is large ) n log n + B log n � λ eigs − λ ⋆ � � � � � σ n log n + B log n ( can be significantly improved ) 12/ 21

  25. j 6 ! 6 ? j j 6 ! 6 ? j j 6 ! 6 ? j n n n Main results: eigenvalue perturbation Theorem 1 (Chen, Cheng, Fan ’18) With high prob., leading eigenvalue λ eigs of M obeys � µ � λ eigs − λ ⋆ � � � � σ � � � n log n + B log n n 13/ 21

  26. Main results: eigenvalue perturbation Theorem 1 (Chen, Cheng, Fan ’18) With high prob., leading eigenvalue λ eigs of M obeys � µ � λ eigs − λ ⋆ � � � � σ � � � n log n + B log n n 10 0 10 0 10 0 Eigen-Decomposition Eigen-Decomposition SVD SVD SVD � λ svd − λ ? � � Rescaled SVD Error � j 6 ! 6 ? j j 6 ! 6 ? j j 6 ! 6 ? j 10 -1 10 -1 10 -1 � λ svd − λ ? � � 2 . 5 p n � 10 -2 10 -2 10 -2 � λ eigs − λ ? � � . 5 200 200 200 400 400 400 600 600 600 800 800 800 1000 1000 1000 1200 1200 1200 1400 1400 1400 1600 1600 1600 1800 1800 1800 2000 2000 2000 � n n n n � n • Eigen-decomposition is µ times better than SVD! � � σ √ n log n + B log n � � λ svd − λ ⋆ � — recall 13/ 21

  27. min fk u ! u ? k 1 ; k u + u ? k 1 g n Main results: entrywise eigenvector perturbation Theorem 2 (Chen, Cheng, Fan ’18) With high prob., leading eigenvector u of M obeys � µ � � u ± u ⋆ � � � σ � min ∞ � n log n + B log n � n 14/ 21

  28. min fk u ! u ? k 1 ; k u + u ? k 1 g n Main results: entrywise eigenvector perturbation Theorem 2 (Chen, Cheng, Fan ’18) With high prob., leading eigenvector u of M obeys � µ � � � u ± u ⋆ � � σ � min ∞ � n log n + B log n � n � � λ ⋆ � • if � H � ≪ � , then � � u ± u ⋆ � � � u ⋆ � min 2 ≪ ( classical bound ) � � 2 14/ 21

  29. min fk u ! u ? k 1 ; k u + u ? k 1 g n Main results: entrywise eigenvector perturbation Theorem 2 (Chen, Cheng, Fan ’18) With high prob., leading eigenvector u of M obeys � µ � � u ± u ⋆ � � � σ � min ∞ � n log n + B log n � n � � λ ⋆ � • if � H � ≪ � , then � u ± u ⋆ � � � � u ⋆ � min 2 ≪ ( classical bound ) � � 2 � � u ± u ⋆ � � � u ⋆ � min ∞ ≪ ( our bound ) � � ∞ 14/ 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend