the bimodal formation time distribution of infall dark
play

The Bimodal Formation Time Distribution of Infall Dark Matter Halos - PowerPoint PPT Presentation

The Bimodal Formation Time Distribution of Infall Dark Matter Halos and Its Effect on Galaxies Jingjing Shi KIAA, Peking University In collaboration with: Huiyuan Wang (USTC), Houjun Mo (UMass & THU), Lizhi Xie (TJNU), Ravi K.


  1. The Bimodal Formation Time Distribution of Infall Dark Matter Halos and Its Effect on Galaxies Jingjing Shi 史晶晶 KIAA, Peking University In collaboration with: Huiyuan Wang (USTC), Houjun Mo (UMass & THU), Lizhi Xie (TJNU), Ravi K. Sheth (UPenn), Xiaoyu Wang (USTC), Andrea Lapi (SISSA) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  2. Motivation Formation time distribution of subhalos: Subclump mass: Infall Halos Parent mass: Main Trunk Lacey & Cole 1993 Sheth 2003

  3. Motivation A. Does subhalo share a similar accretion history as the host halo? B. What is the pre-accretion phase of subhalo looks like? and How is it related with the galaxy properties lying inside? Satellite Quenching: Infall Halos Main Trunk Lacey & Cole 1993 Wetzel et. al. 2013

  4. Merger trees and simulations: July 2-6, ICTP Jingjing Shi, KIAA, PKU

  5. 7 2 . 0 10 11 < M 0 < 10 11 . 5 7 < z peak < 7 . 5 10 12 < M 0 < 10 12 . 5 1 . 5 5 < z peak < 5 . 5 6 10 13 < M 0 < 10 13 . 5 3 < z peak < 3 . 5 10 14 < M 0 < 10 14 . 5 1 . 0 2 < z peak < 2 . 5 5 1 . 4 < z peak < 1 . 5 0 . 5 0 . 9 < z peak < 1 1 . 4 < z peak < 1 . 5 4 P ( a nf ) 0 . 4 < z peak < 0 . 5 0 . 0 0 < z peak < 0 . 1 Young 3 . 0 3 10 10 < M peak < 10 10 . 5 2 . 5 10 10 . 5 < M peak < 10 11 10 11 < M 0 < 6 ⇤ 10 14 M � /h 2 . 0 10 11 < M peak < 10 11 . 5 2 old 10 11 . 5 < M peak < 10 12 1 . 5 1 . 0 1 0 . 5 1 . 4 < z peak < 1 . 5 0 0 . 0 1 2 3 4 1 . 0 1 . 5 2 . 0 2 . 5 a nf a nf The bimodal formation time distribution of infall DM halos Shi et al. (2018) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  6. Survivors and First-order accreted halos Survivors First-order halos 7 7 < z peak < 7 . 5 5 < z peak < 5 . 5 6 3 < z peak < 3 . 5 2 < z peak < 2 . 5 5 1 . 4 < z peak < 1 . 5 0 . 9 < z peak < 1 4 P ( a nf ) 0 . 4 < z peak < 0 . 5 0 < z peak < 0 . 1 3 2 1 0 1 2 3 4 1 2 3 4 a nf a nf Shi et al. (2018) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  7. Wavering population wavering population 7 2 . 0 10 11 < M 0 < 10 11 . 5 7 < z peak < 7 . 5 10 12 < M 0 < 10 12 . 5 1 . 5 5 < z peak < 5 . 5 6 10 13 < M 0 < 10 13 . 5 3 < z peak < 3 . 5 10 14 < M 0 < 10 14 . 5 1 . 0 2 < z peak < 2 . 5 5 1 . 4 < z peak < 1 . 5 0 . 5 0 . 9 < z peak < 1 1 . 4 < z peak < 1 . 5 4 P ( a nf ) 0 . 4 < z peak < 0 . 5 0 . 0 0 < z peak < 0 . 1 3 . 0 3 10 10 < M peak < 10 10 . 5 2 . 5 10 10 . 5 < M peak < 10 11 10 11 < M 0 < 6 ⇤ 10 14 M � /h 2 . 0 10 11 < M peak < 10 11 . 5 2 10 11 . 5 < M peak < 10 12 1 . 5 1 . 0 1 0 . 5 1 . 4 < z peak < 1 . 5 0 0 . 0 1 2 3 4 1 . 0 1 . 5 2 . 0 2 . 5 a nf a nf Shi et al. (2018) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  8. Mass accretion history M peak : 10 11 − 10 11 . 5 , a nf < 1 . 3 M peak : 10 11 − 10 11 . 5 , a nf > 1 . 5 10 0 10 0 Young old M vir ( z ) /M vir ( z peak ) M vir ( z ) /M vir ( z peak ) 10 − 1 10 − 1 0 1 2 3 4 0 1 2 3 4 (1 + z ) / (1 + z peak ) (1 + z ) / (1 + z peak ) Shi et al. (2018) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  9. Two-Phase Mass accretion history Shi et al. (2018) 6 6 Slow Accretion 5 5 4 Turning Point 3 4 P (log xx ) 2 3 1 0 0 . 1 0 . 2 0 . 3 Fast Accretion 2 10 11 < M 0 < 6 ⇤ 10 14 M � /h 1 0 0 . 00 0 . 25 0 . 50 0 . 75 1 . 00 1 . 25 1 . 50 1 . 75 log xx = log[ H 2 ( z f ) /H 2 ( z peak )] Zhao et al. (2003) Fast Accretion Slow Accretion July 2-6, ICTP Jingjing Shi, KIAA, PKU

  10. Infall halos versus Normal halos z peak = 0 . 2 = z z peak = 1 = z z peak = 2 = z z peak = 3 = z 4 . 0 Whole Main Halos [10 11 , 10 11 . 5 ] 2 . 5 1 . 5 3 . 5 Infall Halos 3 . 0 2 . 0 2 . 5 P ( a nf ) 1 . 0 0 . 5 1 . 5 2 . 0 1 . 5 1 . 0 0 . 5 1 . 0 0 . 5 0 . 5 0 . 0 0 . 0 0 . 0 0 . 0 z peak = 0 . 2 = z z peak = 1 = z z peak = 2 = z z peak = 3 = z 2 . 5 5 . 5 4 . 0 5 . 0 [10 12 , 10 13 ] 3 . 5 2 . 0 4 . 5 3 . 0 4 . 0 3 . 5 1 . 5 2 . 5 P ( a nf ) 3 . 0 0 . 5 2 . 0 2 . 5 1 . 0 1 . 5 2 . 0 1 . 5 1 . 0 0 . 5 1 . 0 0 . 5 0 . 5 0 . 0 0 . 0 0 . 0 0 . 0 1 . 2 1 . 8 2 . 4 3 . 0 3 . 6 1 . 2 1 . 6 2 . 0 2 . 4 1 . 2 1 . 6 2 . 0 1 . 2 1 . 6 a nf a nf a nf a nf Shi et al. (2018) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  11. EPS merger tree results 7 M 0 = 10 11 . 25 7 . < z peak < 8 . 5 . 1 . 5 M 0 = 10 12 . 25 5 < z peak < 5 . 5 6 M 0 = 10 13 . 25 3 < z peak < 3 . 5 1 . 0 M 0 = 10 14 . 25 2 < z peak < 2 . 5 5 1 . < z peak < 1 . 2 0 . 5 0 . 8 < z peak < 1 1 . 2 < z peak < 1 . 5 4 P ( a nf ) 0 . 4 < z peak < 0 . 6 0 . 0 0 < z peak < 0 . 2 3 10 10 < M peak < 10 10 . 5 2 10 10 . 5 < M peak < 10 11 10 11 < M peak < 10 11 . 5 2 10 11 . 5 < M peak < 10 12 1 1 1 . 2 < z peak < 1 . 5 0 0 1 2 3 4 1 . 0 1 . 5 2 . 0 2 . 5 a nf a nf Shi et al. (2018) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  12. Connection between halo age and galaxy color Bray et al. (2016) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  13. Nelson et al. (2015)

  14. Stellar mass at accretion time and z=0 Stellar mass/halo mass at accretion 10 10 . 9 < M peak < 10 11 . 5 10 11 . 5 < M peak < 10 12 . 1 Slow: a nf > 1 . 5 Fast: a nf < 1 . 3 � 1 . 5 � 1 . 5 log M ? , peak , 0 /M peak z=0 Slow � 2 . 0 � 2 . 0 z_peak z = z peak � 2 . 5 � 2 . 5 Fast z = 0 M ? , 0 > 10 8 M � /h z = z peak z = 0 � 3 . 0 � 3 . 0 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 log (1 + z peak ) log (1 + z peak ) Accretion redshift Shi et al. (2018), in preparation July 2-6, ICTP Jingjing Shi, KIAA, PKU

  15. Stellar mass evolution Stellar mass(z)/stellar mass at accretion 10 10 . 9 < M peak < 10 11 . 5 10 11 . 5 < M peak < 10 12 . 1 0 log m ? ( z ) /m ? , peak � 1 Slow � 2 0 . 2 < z peak < 0 . 6, Slow Fast � 3 0 . 2 < z peak < 0 . 6, Fast M ? , 0 > 10 8 M � /h 1 < z peak < 1 . 5, Slow 1 < z peak < 1 . 5, Fast � 4 � 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 � 0 . 4 � 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 log (1 + z ) / (1 + z peak ) log (1 + z ) / (1 + z peak ) Redshift Shi et al. (2018), in preparation July 2-6, ICTP Jingjing Shi, KIAA, PKU

  16. Gas mass at accretion time and z=0 10 10 . 9 < M peak < 10 11 . 5 10 11 . 5 < M peak < 10 12 . 1 Gas mass/halo mass at accretion z = z peak Slow: a nf > 1 . 5 0 . 09 0 . 09 z = 0 M ? , 0 > 10 8 M � /h Fast: a nf < 1 . 3 z = z peak 0 . 08 0 . 08 z = 0 log M gas , peak , 0 /M peak 0 . 07 0 . 07 0 . 06 0 . 06 Slow 0 . 05 0 . 05 0 . 04 0 . 04 0 . 03 0 . 03 0 . 02 0 . 02 z_peak Fast 0 . 01 0 . 01 z=0 0 . 00 0 . 00 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 log (1 + z peak ) log (1 + z peak ) Accretion redshift Shi et al. (2018), in preparation July 2-6, ICTP Jingjing Shi, KIAA, PKU

  17. Gas mass evolution 10 10 . 9 < M peak < 10 11 . 5 10 11 . 5 < M peak < 10 12 . 1 0 . 5 Gas mass(z)/gas mass at accretion 0 . 0 log m gas ( z ) /m gas , peak � 0 . 5 Slow � 1 . 0 � 1 . 5 Fast 0 . 2 < z peak < 0 . 6, Slow 0 . 2 < z peak < 0 . 6, Fast � 2 . 0 M ? , 0 > 10 8 M � /h 1 < z peak < 1 . 5, Slow 1 < z peak < 1 . 5, Fast � 2 . 5 � 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 � 0 . 4 � 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 log (1 + z ) / (1 + z peak ) log (1 + z ) / (1 + z peak ) Redshift Shi et al. (2018), in preparation July 2-6, ICTP Jingjing Shi, KIAA, PKU

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend