the geometry of monopoles new and old iv
play

The Geometry of Monopoles: New and Old IV H.W. Braden Varna, June - PowerPoint PPT Presentation

The Geometry of Monopoles: New and Old IV H.W. Braden Varna, June 2011 Curve results with T.P. Northover. Monopole Results in collaboration with V.Z. Enolski, A.DAvanzo. H.W. Braden The Geometry of Monopoles: New and Old IV Recall The


  1. The Geometry of Monopoles: New and Old IV H.W. Braden Varna, June 2011 Curve results with T.P. Northover. Monopole Results in collaboration with V.Z. Enolski, A.D’Avanzo. H.W. Braden The Geometry of Monopoles: New and Old IV

  2. Recall ▶ The only spectral curves of a BPS monopole of the form √ Γ( 1 6 )Γ( 1 휂 3 + 휒 ( 휁 6 + b 휁 3 − 1) = 0 have b = ± 5 1 3 ) 3 = − 1 2, 휒 2 . 1 1 6 6 휋 2 These correspond to tetrahedrally symmetric monopoles. H.W. Braden The Geometry of Monopoles: New and Old IV

  3. Recall ▶ The only spectral curves of a BPS monopole of the form √ Γ( 1 6 )Γ( 1 휂 3 + 휒 ( 휁 6 + b 휁 3 − 1) = 0 have b = ± 5 1 3 ) 3 = − 1 2, 휒 2 . 1 1 6 6 휋 2 These correspond to tetrahedrally symmetric monopoles. ▶ SO (3) induces an action on T ℙ 1 via PSU (2) Invariant curves yield symmetric monopoles. ( p ) q ∣ p ∣ 2 + ∣ q ∣ 2 = 1 , ∈ PSU (2) , − ¯ q p ¯ 휁 → ¯ p 휁 − ¯ 휂 q q 휁 + p , 휂 → ( q 휁 + p ) 2 H.W. Braden The Geometry of Monopoles: New and Old IV

  4. Recall ▶ The only spectral curves of a BPS monopole of the form √ Γ( 1 6 )Γ( 1 휂 3 + 휒 ( 휁 6 + b 휁 3 − 1) = 0 have b = ± 5 1 3 ) 3 = − 1 2, 휒 2 . 1 1 6 6 휋 2 These correspond to tetrahedrally symmetric monopoles. ▶ SO (3) induces an action on T ℙ 1 via PSU (2) Invariant curves yield symmetric monopoles. ( p ) q ∣ p ∣ 2 + ∣ q ∣ 2 = 1 , ∈ PSU (2) , − ¯ q p ¯ 휁 → ¯ p 휁 − ¯ 휂 q q 휁 + p , 휂 → ( q 휁 + p ) 2 ▶ Space-time symmetries yield geodesic submanifolds of the moduli space. If 1-dimensional then orbits of geodesic scattering H.W. Braden The Geometry of Monopoles: New and Old IV

  5. Recall ▶ The only spectral curves of a BPS monopole of the form √ Γ( 1 6 )Γ( 1 휂 3 + 휒 ( 휁 6 + b 휁 3 − 1) = 0 have b = ± 5 1 3 ) 3 = − 1 2, 휒 2 . 1 1 6 6 휋 2 These correspond to tetrahedrally symmetric monopoles. ▶ SO (3) induces an action on T ℙ 1 via PSU (2) Invariant curves yield symmetric monopoles. ( p ) q ∣ p ∣ 2 + ∣ q ∣ 2 = 1 , ∈ PSU (2) , − ¯ q p ¯ 휁 → ¯ p 휁 − ¯ 휂 q q 휁 + p , 휂 → ( q 휁 + p ) 2 ▶ Space-time symmetries yield geodesic submanifolds of the moduli space. If 1-dimensional then orbits of geodesic scattering ▶ Consider cyclic space-time symmetry H.W. Braden The Geometry of Monopoles: New and Old IV

  6. Cyclically Symmetric Monopoles Spectral Curves ▶ 휔 = exp(2 휋 i / n ), p = 휔 1 / 2 q = 0 ( 휂, 휁 ) → ( 휔휂, 휔휁 ) 휂 i 휁 j invariant for i + j ≡ 0 mod n 휂 n + a 1 휂 n − 1 휁 + a 2 휂 n − 2 휁 2 + . . . + a n 휁 n + 훽휁 2 n + 훾 = 0 H.W. Braden The Geometry of Monopoles: New and Old IV

  7. Cyclically Symmetric Monopoles Spectral Curves ▶ 휔 = exp(2 휋 i / n ), p = 휔 1 / 2 q = 0 ( 휂, 휁 ) → ( 휔휂, 휔휁 ) 휂 i 휁 j invariant for i + j ≡ 0 mod n 휂 n + a 1 휂 n − 1 휁 + a 2 휂 n − 2 휁 2 + . . . + a n 휁 n + 훽휁 2 n + 훾 = 0 ▶ Impose reality conditions and centre a 1 = 0 휂 n + a 2 휂 n − 2 휁 2 + . . . + a n 휁 n + 훽휁 2 n + ( − 1) n ¯ 훽 = 0 , a i ∈ R By an overall rotation we may choose 훽 real H.W. Braden The Geometry of Monopoles: New and Old IV

  8. Cyclically Symmetric Monopoles Spectral Curves ▶ 휔 = exp(2 휋 i / n ), p = 휔 1 / 2 q = 0 ( 휂, 휁 ) → ( 휔휂, 휔휁 ) 휂 i 휁 j invariant for i + j ≡ 0 mod n 휂 n + a 1 휂 n − 1 휁 + a 2 휂 n − 2 휁 2 + . . . + a n 휁 n + 훽휁 2 n + 훾 = 0 ▶ Impose reality conditions and centre a 1 = 0 휂 n + a 2 휂 n − 2 휁 2 + . . . + a n 휁 n + 훽휁 2 n + ( − 1) n ¯ 훽 = 0 , a i ∈ R By an overall rotation we may choose 훽 real ▶ x = 휂/휁 , 휈 = 휁 n 훽 , x n + a 2 x n − 2 + . . . + a n + 휈 + ( − 1) n ∣ 훽 ∣ 2 = 0 휈 H.W. Braden The Geometry of Monopoles: New and Old IV

  9. Cyclically Symmetric Monopoles Spectral Curves ▶ 휔 = exp(2 휋 i / n ), p = 휔 1 / 2 q = 0 ( 휂, 휁 ) → ( 휔휂, 휔휁 ) 휂 i 휁 j invariant for i + j ≡ 0 mod n 휂 n + a 1 휂 n − 1 휁 + a 2 휂 n − 2 휁 2 + . . . + a n 휁 n + 훽휁 2 n + 훾 = 0 ▶ Impose reality conditions and centre a 1 = 0 휂 n + a 2 휂 n − 2 휁 2 + . . . + a n 휁 n + 훽휁 2 n + ( − 1) n ¯ 훽 = 0 , a i ∈ R By an overall rotation we may choose 훽 real ▶ x = 휂/휁 , 휈 = 휁 n 훽 , x n + a 2 x n − 2 + . . . + a n + 휈 + ( − 1) n ∣ 훽 ∣ 2 = 0 휈 ▶ Affine Toda Spectral Curve y = 휈 − ( − 1) n ∣ 훽 ∣ 2 휈 y 2 = ( x n + a 2 x n − 2 + . . . + a n ) 2 − 4( − 1) n ∣ 훽 ∣ 2 H.W. Braden The Geometry of Monopoles: New and Old IV

  10. Cyclically Symmetric Monopoles Overview ▶ 풞 monopole is an unbranched n : 1 cover 풞 Toda g monopole = ( n − 1) 2 , g Toda = ( n − 1) H.W. Braden The Geometry of Monopoles: New and Old IV

  11. Cyclically Symmetric Monopoles Overview ▶ 풞 monopole is an unbranched n : 1 cover 풞 Toda g monopole = ( n − 1) 2 , g Toda = ( n − 1) ▶ Sutcliffe: Ansatz for Nahm’s equations for cyclic monopoles in terms of Affine Toda equation. Cyclic Nahm eqns. ⊃ Affine Toda eqns. H.W. Braden The Geometry of Monopoles: New and Old IV

  12. Cyclically Symmetric Monopoles Overview ▶ 풞 monopole is an unbranched n : 1 cover 풞 Toda g monopole = ( n − 1) 2 , g Toda = ( n − 1) ▶ Sutcliffe: Ansatz for Nahm’s equations for cyclic monopoles in terms of Affine Toda equation. Cyclic Nahm eqns. ⊃ Affine Toda eqns. ▶ Cyclic Nahm eqns. ≡ Affine Toda eqns. H.W. Braden The Geometry of Monopoles: New and Old IV

  13. Cyclically Symmetric Monopoles Overview ▶ 풞 monopole is an unbranched n : 1 cover 풞 Toda g monopole = ( n − 1) 2 , g Toda = ( n − 1) ▶ Sutcliffe: Ansatz for Nahm’s equations for cyclic monopoles in terms of Affine Toda equation. Cyclic Nahm eqns. ⊃ Affine Toda eqns. ▶ Cyclic Nahm eqns. ≡ Affine Toda eqns. ▶ Cyclic monopoles ≡ (particular) Affine Toda solns. H.W. Braden The Geometry of Monopoles: New and Old IV

  14. Cyclically Symmetric Monopoles Overview ▶ 풞 monopole is an unbranched n : 1 cover 풞 Toda g monopole = ( n − 1) 2 , g Toda = ( n − 1) ▶ Sutcliffe: Ansatz for Nahm’s equations for cyclic monopoles in terms of Affine Toda equation. Cyclic Nahm eqns. ⊃ Affine Toda eqns. ▶ Cyclic Nahm eqns. ≡ Affine Toda eqns. ▶ Cyclic monopoles ≡ (particular) Affine Toda solns. ▶ Implementation in terms of curves, period matrices, theta functions etc. H.W. Braden The Geometry of Monopoles: New and Old IV

  15. Cyclic Nahm eqns. ≡ Affine Toda eqns. Sutcliffe Ansatz T 1 + iT 2 = ( T 1 − iT 2 ) T ⎛ ⎞ e ( q 1 − q 2 ) / 2 0 0 . . . 0 ⎜ ⎟ e ( q 2 − q 3 ) / 2 0 0 . . . 0 ⎜ ⎟ ⎜ ⎟ . . ... . . = ⎜ ⎟ . . ⎜ ⎟ ⎝ ⎠ e ( q n − 1 − q n ) / 2 0 0 0 . . . e ( q n − q 1 ) / 2 0 0 . . . 0 T 3 = − i 2 Diag ( p 1 , p 2 , . . . , p n ) d ds ( T 1 + iT 2 ) = i [ T 3 , T 1 + iT 2 ] ⇒ p i − p i +1 = ˙ q i − ˙ q i +1 ds T 3 = [ T 1 , T 2 ] = i d p i = − e q i − q i +1 + e q i − 1 − q i 2[ T 1 + iT 2 , T 1 − iT 2 ] ⇒ ˙ H.W. Braden The Geometry of Monopoles: New and Old IV

  16. Cyclic Nahm eqns. ≡ Affine Toda eqns. Sutcliffe Ansatz C’td ▶ p i , q i real ( ) [ e q 1 − q 2 + e q 2 − q 3 + . . . + e q n − q 1 ] H = 1 p 2 1 + . . . + p 2 − . n 2 Toda ⇒ Nahm Affine Toda eqns. ⊂ Cyclic Nahm eqns. H.W. Braden The Geometry of Monopoles: New and Old IV

  17. Cyclic Nahm eqns. ≡ Affine Toda eqns. Sutcliffe Ansatz C’td ▶ p i , q i real ( ) [ e q 1 − q 2 + e q 2 − q 3 + . . . + e q n − q 1 ] H = 1 p 2 1 + . . . + p 2 − . n 2 Toda ⇒ Nahm Affine Toda eqns. ⊂ Cyclic Nahm eqns. ▶ G ⊂ SO (3) acts on triples t = ( T 1 , T 2 , T 3 ) ∈ ℝ 3 ⊗ SL ( n , ℂ ) via natural action on ℝ 3 and conjugation on SL ( n , ℂ ) ▶ g ′ ∈ SO (3) and g = 휌 ( g ′ ) ∈ SL ( n , ℂ ). Invariance of curve ⇒ g ( T 1 + iT 2 ) g − 1 = 휔 ( T 1 + iT 2 ) , gT 3 g − 1 = T 3 , g ( T 1 − iT 2 ) g − 1 = 휔 − 1 ( T 1 − iT 2 ) . H.W. Braden The Geometry of Monopoles: New and Old IV

  18. Cyclically Symmetric Monopoles Cyclic Nahm eqns. ≡ Affine Toda eqns. ▶ SO (3) action on SL ( n , ℂ ) ∼ 2 n − 1 ⊕ 2 n − 3 ⊕ . . . ⊕ 5 ⊕ 3 H.W. Braden The Geometry of Monopoles: New and Old IV

  19. Cyclically Symmetric Monopoles Cyclic Nahm eqns. ≡ Affine Toda eqns. ▶ SO (3) action on SL ( n , ℂ ) ∼ 2 n − 1 ⊕ 2 n − 3 ⊕ . . . ⊕ 5 ⊕ 3 ▶ Kostant ⇒ 휌 ( SO (3)) principal three dimensional subgroup. [ 2 휋 ] ▶ g = 휌 ( g ′ ) = exp n H , H semi-simple, generator Cartan TDS ▶ g ≡ Diag ( 휔 n − 1 , . . . , 휔, 1), gE ij g − 1 = 휔 j − i E ij . H.W. Braden The Geometry of Monopoles: New and Old IV

  20. Cyclically Symmetric Monopoles Cyclic Nahm eqns. ≡ Affine Toda eqns. ▶ SO (3) action on SL ( n , ℂ ) ∼ 2 n − 1 ⊕ 2 n − 3 ⊕ . . . ⊕ 5 ⊕ 3 ▶ Kostant ⇒ 휌 ( SO (3)) principal three dimensional subgroup. [ 2 휋 ] ▶ g = 휌 ( g ′ ) = exp n H , H semi-simple, generator Cartan TDS ▶ g ≡ Diag ( 휔 n − 1 , . . . , 휔, 1), gE ij g − 1 = 휔 j − i E ij . ▶ For a cyclically invariant monopole ∑ ∑ T 3 = − i q ) / 2 E 훼 , e ( 훼, ˜ T 1 + iT 2 = ˜ p j H j 2 훼 ∈ ˆ j Δ H.W. Braden The Geometry of Monopoles: New and Old IV

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend