the geometry of monopoles new and old iii
play

The Geometry of Monopoles: New and Old III H.W. Braden Varna, June - PowerPoint PPT Presentation

The Geometry of Monopoles: New and Old III H.W. Braden Varna, June 2011 Curve results with T.P. Northover. Monopole Results in collaboration with V.Z. Enolski, A.DAvanzo. H.W. Braden The Geometry of Monopoles: New and Old III Recall: To


  1. The Geometry of Monopoles: New and Old III H.W. Braden Varna, June 2011 Curve results with T.P. Northover. Monopole Results in collaboration with V.Z. Enolski, A.D’Avanzo. H.W. Braden The Geometry of Monopoles: New and Old III

  2. Recall: To construct a su (2) charge n monopole we need ▶ Curve 풞 ⊂ T ℙ 1 : 0 = P ( 휂, 휁 ) = 휂 n + a 1 ( 휁 ) 휂 n − 1 + . . . + a n ( 휁 ) H.W. Braden The Geometry of Monopoles: New and Old III

  3. Recall: To construct a su (2) charge n monopole we need ▶ Curve 풞 ⊂ T ℙ 1 : 0 = P ( 휂, 휁 ) = 휂 n + a 1 ( 휁 ) 휂 n − 1 + . . . + a n ( 휁 ) a r ( 휁 ) = ( − 1) r 휁 2 r a r ( − 1 ▶ deg a r ( 휁 ) ≤ 2 r 휁 ) ¯ [∏ r ) 1 / 2 ] ∏ r ( 훼 l k =1 ( 휁 − 훼 r )( 휁 + 1 a r ( 휁 ) = 휒 r 훼 r ) l =1 훼 l 훼 r ∈ ℂ , 휒 ∈ ℝ a r ( 휁 ) given by 2 r + 1 (real) parameters H.W. Braden The Geometry of Monopoles: New and Old III

  4. Recall: To construct a su (2) charge n monopole we need ▶ Curve 풞 ⊂ T ℙ 1 : 0 = P ( 휂, 휁 ) = 휂 n + a 1 ( 휁 ) 휂 n − 1 + . . . + a n ( 휁 ) a r ( 휁 ) = ( − 1) r 휁 2 r a r ( − 1 ▶ deg a r ( 휁 ) ≤ 2 r 휁 ) ¯ [∏ r ) 1 / 2 ] ∏ r ( 훼 l k =1 ( 휁 − 훼 r )( 휁 + 1 a r ( 휁 ) = 휒 r 훼 r ) l =1 훼 l 훼 r ∈ ℂ , 휒 ∈ ℝ a r ( 휁 ) given by 2 r + 1 (real) parameters ▶ Ercolani-Sinha Constraints: (∮ ) T ∮ 1 = 1 2 n + 1 1. U = 픟 1 훾 ∞ , . . . , 픟 g 훾 ∞ 2 휏 m . 2 휋횤 2. Ω = 훽 0 휂 n − 2 + 훽 1 ( 휁 ) 휂 n − 3 + . . . + 훽 n − 2 ( 휁 ) ∮ d 휁, Ω = − 2 훽 0 ∂ 풫 픢픰 ∂휂 픢픰 = n ⋅ 픞 + m ⋅ 픟 impose g transcendental constraints on 풞 ∑ n (2 j + 1) − g = ( n + 3)( n − 1) − ( n − 1) 2 = 4( n − 1) j =2 ▶ Flows and Theta Divisor: s U + C ∕∈ Θ H.W. Braden The Geometry of Monopoles: New and Old III

  5. Recall: To construct a su (2) charge n monopole we need ▶ Curve 풞 ⊂ T ℙ 1 : 0 = P ( 휂, 휁 ) = 휂 n + a 1 ( 휁 ) 휂 n − 1 + . . . + a n ( 휁 ) a r ( 휁 ) = ( − 1) r 휁 2 r a r ( − 1 ▶ deg a r ( 휁 ) ≤ 2 r 휁 ) ¯ [∏ r ) 1 / 2 ] ∏ r ( 훼 l k =1 ( 휁 − 훼 r )( 휁 + 1 a r ( 휁 ) = 휒 r 훼 r ) l =1 훼 l 훼 r ∈ ℂ , 휒 ∈ ℝ a r ( 휁 ) given by 2 r + 1 (real) parameters ▶ Ercolani-Sinha Constraints: (∮ ) T ∮ 1 = 1 2 n + 1 1. U = 픟 1 훾 ∞ , . . . , 픟 g 훾 ∞ 2 휏 m . 2 휋횤 2. Ω = 훽 0 휂 n − 2 + 훽 1 ( 휁 ) 휂 n − 3 + . . . + 훽 n − 2 ( 휁 ) ∮ d 휁, Ω = − 2 훽 0 ∂ 풫 픢픰 ∂휂 픢픰 = n ⋅ 픞 + m ⋅ 픟 impose g transcendental constraints on 풞 ∑ n (2 j + 1) − g = ( n + 3)( n − 1) − ( n − 1) 2 = 4( n − 1) j =2 ▶ Flows and Theta Divisor: s U + C ∕∈ Θ ▶ Symmetry aids calculation of 휏 , U , K Q H.W. Braden The Geometry of Monopoles: New and Old III

  6. Possible Charge 3 Curve A trigonal curve and its homology 6 ∏ ▶ w 3 = ( z − 휆 i ) ℛ : ( z , w ) → ( z , 휌 w ) , 휌 = exp { 2 i 휋/ 3 } i =1 H.W. Braden The Geometry of Monopoles: New and Old III

  7. Possible Charge 3 Curve A trigonal curve and its homology 6 ∏ ▶ w 3 = ( z − 휆 i ) ℛ : ( z , w ) → ( z , 휌 w ) , 휌 = exp { 2 i 휋/ 3 } i =1 ▶ ℛ ( 픟 i ) = 픞 픦 , i = 1 , 2 , 3 , ℛ ( 픟 4 ) = − 픞 4 Aut ( 풞 ) = C 3 a 4 λ 2 λ 3 a 1 λ 2 a 2 λ 1 λ 4 b 1 a 3 λ 5 a 1 λ 6 λ 1 0 H.W. Braden The Geometry of Monopoles: New and Old III

  8. Possible Charge 3 Curve Differentials and periods (Wellstein, 1899; Matsumoto, 2000; BE 2006) d u 4 = z 2 d z d u 1 = d z d u 2 = d z d u 3 = z d z w , w 2 , w 2 , w 2 ⎛ ⎞ ∮ ⎝ ⎠ 풜 = ( 풜 ki ) = d u i = ( x , b , c , d ) 픞 k i , k =1 ,..., 4 H = diag (1 , 1 , 1 , − 1) , Λ = diag ( 휌, 휌 2 , 휌 2 , 휌 2 ) ℬ = H 풜 Λ , ⎛ ⎞ ∮ ∮ ∮ ∮ ∑ ⎜ ⎟ ⎠ = 0 ⇔ 0 = x T H b = x T H c = x T H d d u k d u l − d u k d u l ⎝ i 픞 i 픟 i 픟 i 픞 i ( ) H − (1 − 휌 ) xx T 휏 픟 = 풜ℬ − 1 = 휌 x T H x x T H x < 0 Im 휏 픟 is positive definite if and only if ¯ H.W. Braden The Geometry of Monopoles: New and Old III

  9. Possible Charge 3 Curve Solving the Ercolani-Sinha Constraints Theorem (∮ ) T ∮ 1 = 1 2 n + 1 U = 픟 1 훾 ∞ , . . . , 픟 g 훾 ∞ 2 휏 m ⇐ ⇒ 2 휋횤 1 6 휒 3 x = 휉 ( H n + 휌 2 m ) , 휉 = [ n T H n − m . n + m T H m ] where 휉 is real x 1 x 2 x 3 x 4 = = = = 휉, n 1 + 휌 2 m 1 n 2 + 휌 2 m 2 n 3 + 휌 2 m 3 − n 4 + 휌 2 m 4 x T H x ⇒ ¯ x T H x < 0 ⇐ = [ n T H n − m . n + m T H m ] x i / x j ∈ ℚ [ 휌 ] ¯ ∣ 휉 ∣ 2 3 ∑ ( n 2 i − n i m i + m 2 i ) − n 2 4 − m 2 = 4 − m 4 n 4 < 0 . i =1 H.W. Braden The Geometry of Monopoles: New and Old III

  10. Symmetric 3-monopoles 휂 3 + 휒 ( 휁 6 + b 휁 3 − 1) = 0 , ▶ 풞 : b ∈ ℝ H.W. Braden The Geometry of Monopoles: New and Old III

  11. Symmetric 3-monopoles 휂 3 + 휒 ( 휁 6 + b 휁 3 − 1) = 0 , ▶ 풞 : b ∈ ℝ ▶ √ √ b 2 + 4 − b + 3 ( 훼, 휌 2 훽, 휌훼, 훽, 휌 2 훼, 휌훽 ) , 훼 = > 0 , 훼훽 = − 1 2 H.W. Braden The Geometry of Monopoles: New and Old III

  12. Symmetric 3-monopoles 휂 3 + 휒 ( 휁 6 + b 휁 3 − 1) = 0 , ▶ 풞 : b ∈ ℝ ▶ √ √ b 2 + 4 − b + 3 ( 훼, 휌 2 훽, 휌훼, 훽, 휌 2 훼, 휌훽 ) , 훼 = > 0 , 훼훽 = − 1 2 ▶ Aut ( 풞 ) → C 3 × S 3 ( 휁, 휂 ) �→ ( 휌휁, 휂 ) , ( 휁, 휂 ) �→ ( − 1 /휁, − 휂/휁 2 ) √ ∫ 훼 ( 1 ) w = − 2 휋 3 훼 3 , 1 d z 3; 1; − 훼 6 ℐ 1 ( 훼 ) = 2 F 1 9 0 √ 훽 ( 1 ) ∫ d z w = 2 휋 3 3 , 1 3; 1; − 훼 − 6 풥 1 ( 훼 ) = 2 F 1 9 훼 0 H.W. Braden The Geometry of Monopoles: New and Old III

  13. Symmetric 3-monopoles 휂 3 + 휒 ( 휁 6 + b 휁 3 − 1) = 0 , ▶ 풞 : b ∈ ℝ ▶ √ √ b 2 + 4 − b + 3 ( 훼, 휌 2 훽, 휌훼, 훽, 휌 2 훼, 휌훽 ) , 훼 = > 0 , 훼훽 = − 1 2 ▶ Aut ( 풞 ) → C 3 × S 3 ( 휁, 휂 ) �→ ( 휌휁, 휂 ) , ( 휁, 휂 ) �→ ( − 1 /휁, − 휂/휁 2 ) √ ∫ 훼 ( 1 ) w = − 2 휋 3 훼 3 , 1 d z 3; 1; − 훼 6 ℐ 1 ( 훼 ) = 2 F 1 9 0 √ 훽 ( 1 ) ∫ d z w = 2 휋 3 3 , 1 3; 1; − 훼 − 6 풥 1 ( 훼 ) = 2 F 1 9 훼 0 ▶ x 1 = − (2 풥 1 + ℐ 1 ) 휌 − 2 ℐ 1 − 풥 1 , x 2 = 휌 x 1 , = 휌 2 x 1 , = 3( 풥 1 − ℐ 1 ) 휌 + 3 풥 1 , x 3 x 4 H.W. Braden The Geometry of Monopoles: New and Old III

  14. Symmetric 3-monopoles Solving the Ercolani-Sinha Constraints To each pair of relatively prime integers ( n , m ) = 1 for which ( m + n )( m − 2 n ) < 0 we obtain a solution to the Ercolani-Sinha constraints for our curve with n = ( n , m − n , − m , 2 n − m ) , m = ( m , − n , n − m , − 3 n ) as follows. First we solve for t , where 2 F 1 ( 1 3 , 2 3 ; 1 , t ) 2 n − m m + n = 3 ; 1 , 1 − t ) . 2 F 1 ( 1 3 , 2 Then √ b 2 + 4 1 − 2 t t = − b + √ b = √ , , b 2 + 4 2 t (1 − t ) and with 훼 6 = t / (1 − t ) we obtain 휒 from 3 = − ( n 1 + m 1 ) 2 휋 훼 2 F 1 (1 3 , 2 1 휒 √ 3; 1 , t ) . 1 3 3 (1 + 훼 6 ) 3 H.W. Braden The Geometry of Monopoles: New and Old III

  15. Ramanujan (1914) ∞ ∞ ∑ (1 + 6 m )( 1 2 ) m ( 1 2 ) m ( 1 ∑ (2 + 15 m )( 1 2 ) m ( 1 3 ) m ( 2 4 2 ) m 27 3 ) m 휋 = ; 4 휋 = ( m !) 3 ( 27 ) m ( m !) 3 4 m 2 m =0 m =0 √ ∞ ∑ (44 + 33 m )( 1 2 ) m ( 1 3 ) m ( 2 3 ) m 15 3 = ( m !) 3 ( 125 ) m 2 휋 4 m =0 H.W. Braden The Geometry of Monopoles: New and Old III

  16. Ramanujan (1914) ∞ ∞ ∑ (1 + 6 m )( 1 2 ) m ( 1 2 ) m ( 1 ∑ (2 + 15 m )( 1 2 ) m ( 1 3 ) m ( 2 4 2 ) m 27 3 ) m 휋 = ; 4 휋 = ( m !) 3 ( 27 ) m ( m !) 3 4 m 2 m =0 m =0 √ ∞ ∑ (44 + 33 m )( 1 2 ) m ( 1 3 ) m ( 2 3 ) m 15 3 = ( m !) 3 ( 125 ) m 2 휋 4 m =0 휏 = i K ′ K ( k ) = 휋 2 2 F 1 (1 2 , 1 K ′ ( k ) = K ( k ′ ) , k ′ 2 = 1 − k 2 2; 1; k 2 ) , K , If k 1 = 1 − k ′ 1 + k ′ then 휏 1 = 2 휏 . Modular equation of degree n : 2 F 1 ( 1 2 , 1 2 F 1 ( 1 2 , 1 2 ; 1; 1 − 훼 ) 2 ; 1; 1 − 훽 ) n = 2 F 1 ( 1 2 , 1 2 F 1 ( 1 2 , 1 2 ; 1; 훼 ) 2 ; 1; 훽 ) ( 훼훽 ) 1 / 4 + ((1 − 훼 )(1 − 훽 )) 1 / 4 = 1 = ⇒ n = 3 H.W. Braden The Geometry of Monopoles: New and Old III

  17. Modular equation of degree n and signature r ( r = 2 , 3 , 4 , 6) 2 F 1 ( 1 r , r − 1 2 F 1 ( 1 r , r − 1 r ; 1; 1 − 훼 ) r ; 1; 1 − 훽 ) n = 2 F 1 ( 1 r , r − 1 2 F 1 ( 1 r , r − 1 r ; 1; 훼 ) r ; 1; 훽 ) H.W. Braden The Geometry of Monopoles: New and Old III

  18. Modular equation of degree n and signature r ( r = 2 , 3 , 4 , 6) 2 F 1 ( 1 r , r − 1 2 F 1 ( 1 r , r − 1 r ; 1; 1 − 훼 ) r ; 1; 1 − 훽 ) n = 2 F 1 ( 1 r , r − 1 2 F 1 ( 1 r , r − 1 r ; 1; 훼 ) r ; 1; 훽 ) ⇒ ( 훼훽 ) 1 / 3 + ((1 − 훼 )(1 − 훽 )) 1 / 3 = 1 n = 2 , r = 3 = √ ⇒ 훽 = 1 2 + 5 3 ⇒ 훽 1 / 3 + (1 − 훽 ) 1 / 3 = 2 1 / 3 = 훼 = 1 / 2 = 18 n =5 , r =3 ⇒ ( 훼훽 ) 1 / 3 +((1 − 훼 )(1 − 훽 )) 1 / 3 +3( 훼훽 (1 − 훼 )(1 − 훽 )) 1 / 6 =1 H.W. Braden The Geometry of Monopoles: New and Old III

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend