on integer and bilevel formulations for the k vertex cut
play

On Integer and Bilevel Formulations for the k -Vertex Cut Problem - PowerPoint PPT Presentation

On Integer and Bilevel Formulations for the k -Vertex Cut Problem Ivana Ljubi c , joint work with Fabio Furini , Enrico Malaguti and Paolo Paronuzzi DEI Guglielmo Marconi, University of Bologna Paris Dauphine


  1. On Integer and Bilevel Formulations for the k -Vertex Cut Problem Ivana Ljubi´ c • , joint work with Fabio Furini ◦ , Enrico Malaguti ∗ and Paolo Paronuzzi ∗ ∗ DEI “Guglielmo Marconi”, University of Bologna ◦ Paris Dauphine University • ESSEC Business School, Paris INOC 2019, June 12-14 2019, Avignon On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 1

  2. Problem setting and motivation On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 2

  3. Problem setting A k-vertex cut is a subset of vertices whose removal disconnects the graph in at least k (not-empty) components. On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 3

  4. Problem setting Example of a 3-vertex cut: On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 4

  5. The k -Vertex Cut Problem Definition Given an undirected graph G = ( V , E ) with vertex weights w v , v ∈ V , and a integer k ≥ 2, find a subset of vertices of minimum weight whose removal disconnects G in at least k (not-empty) components. On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 5

  6. Motivation Family of Critical Node Detection Problems (M. Lalou, M. A. Tahraoui, and H. Kheddouci. The critical node detection problem in networks: A survey. Computer Science Review, 2018); Analysis of networks (D. Kempe, J. Kleinberg, and ´ E. Tardos. Influential nodes in a diffusion model for social networks. Automata, Languages and Programming, 2005.); Decomposition method for linear equation systems . On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 6

  7. Compact Model and Representative Formulation On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 7

  8. Compact formulation We associate a binary variable y i v to all vertices v ∈ V and for all integers i ∈ K , such that: � 1 if vertex v belongs to component i y i i ∈ K , v ∈ V . v = 0 otherwise On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 8

  9. Compact Model Compact ILP formulation for k-Vertex-Cut Problem: � � � w v y i w v − min v v ∈ V i ∈ K v ∈ V � y i v ≤ 1 v ∈ V , i ∈ K y i u + y j v ≤ 1 i � = j ∈ K , uv ∈ E , � y i v ≥ 1 i ∈ K , v ∈ V y i v ∈ { 0 , 1 } i ∈ K , v ∈ V . Drawbacks: LP-optimal solution is zero (set all y i v = 1 / k ), symmetries, etc. On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 9

  10. Bilevel approach On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 10

  11. Bilevel approach Property A graph G has at least k (not empty) components if and only if any cycle-free subgraph of G contains at most | V | − k edges. Example with | V | = 9 and k = 3: On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 11

  12. Bilevel approach Property A graph G has at least k (not empty) components if and only if any cycle-free subgraph of G contains at most | V | − k edges. Example with | V | = 9 and k = 3: On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 12

  13. Bilevel approach The k -vertex cut problem can be seen as a Stackelberg game: the leader searches the smallest subset of vertices V 0 to delete; the follower maximizes the size of the cycle-free subgraph on the residual graph. Property The solution V 0 ⊂ V of the leader is feasible if and only if the value of the optimal follower’s response (i.e., the size of the maximum cycle-free subgraph in the remaining graph) is at most | V | − | V 0 | − k . On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 13

  14. Bilevel approach The leader decisions: � 1 if vertex v is in the k -vertex cut x v = v ∈ V 0 otherwise For the decisions of the follower, we use additional binary variables associated with the edges of G : � 1 if edge uv is selected to be in the cycle-free subgraph uv ∈ E e uv = 0 otherwise On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 14

  15. Bilevel approach The Bilevel ILP formulation of the k -vertex cut problem reads as follows: � min x v v ∈ V � Φ( x ) ≤ | V | − x v − k v ∈ V x v ∈ { 0 , 1 } v ∈ V . Φ( x ) is the optimal solution value of the follower subproblem for a given x . Value Function Reformulation . Value function Φ( x ) is neither convex, nor concave, nor connected... On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 15

  16. How do we calculate Φ( x )? For a solution x ∗ of the leader, which denotes a set V 0 of interdicted vertices, the follower’s subproblem is: � Φ( x ∗ ) = max e uv uv ∈ E e ( S ) ≤ | S | − 1 S ⊆ V , S � = ∅ , e uv ≤ 1 − x ∗ uv ∈ E , u e uv ≤ 1 − x ∗ uv ∈ E , v e uv ∈ { 0 , 1 } uv ∈ E . On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 16

  17. Bilevel approach We can prove that the follower’s subproblem is equivalently restated as: � Φ( x ∗ ) = z uv (1 − x ∗ u − x ∗ max v ) uv ∈ E z ( S ) ≤ | S | − 1 S ⊆ V , S � = ∅ z uv ∈ { 0 , 1 } uv ∈ E . Convexification of the value function Φ( x ) On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 17

  18. Bilevel approach Since the space of feasible solutions of the redefined follower subproblem does not depend on the leader anymore, the non-linear constraint from the BILP formulation: � Φ( x ) ≤ | V | − x v − k v ∈ V can now be replaced by the following exponential family of inequalities: � � (1 − x u − x v ) ≤ | V | − x v − k T ∈ T uv ∈ E ( T ) v ∈ V where T denote the set of all cycle-free subgraphs of G . On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 18

  19. Natural Formulation The following single-level formulation, denoted as Natural Formulation , is a valid model for the k -vertex cut problem: � min w v x v v ∈ V � [deg T ( v ) − 1] x v ≥ k − | V | + | E ( T ) | T ∈ T , v ∈ V x v ∈ { 0 , 1 } v ∈ V . On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 19

  20. Natural formulation � [deg T ( v ) − 1] x v ≥ k − | V | + | E ( T ) | v ∈ V On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 20

  21. Natural formulation � [deg T ( v ) − 1] x v ≥ k − | V | + | E ( T ) | v ∈ V 2 x 2 + x 4 + x 5 ≥ 2 On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 21

  22. Natural formulation � [deg T ( v ) − 1] x v ≥ k − | V | + | E ( T ) | v ∈ V 2 x 2 + x 4 + x 5 ≥ 2 On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 22

  23. Natural formulation � [deg T ( v ) − 1] x v ≥ k − | V | + | E ( T ) | v ∈ V 2 x 2 + x 4 + x 5 ≥ 2 − x 2 + 2 x 4 + 2 x 6 ≥ 1 On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 23

  24. Natural formulation � [deg T ( v ) − 1] x v ≥ k − | V | + | E ( T ) | v ∈ V 2 x 2 + x 4 + x 5 ≥ 2 − x 2 + 2 x 4 + 2 x 6 ≥ 1 On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 24

  25. Separation procedure Let x ∗ be the current solution. We define edge-weights as w ∗ uv = 1 − x ∗ u − x ∗ v , uv ∈ E and search for the maximum-weighted cycle-free subgraph in G . Let W ∗ denote the weight of the obtained subgraph; if W ∗ > | V | − k − � v ∈ V x ∗ v , we have detected a violated inequality. The separation procedure can be performed in polynomial time by running an adaptation of Kruskal’s algorithm for minimum-spanning trees. On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 25

  26. A Hybrid Approach On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 26

  27. Representative Variables Observation A graph G admits a k -vertex cut if and only if α ( G ) ≥ k . To each component we associate a vertex from the stable set - a representative . We introduce a set of binary variable to select which vertices are representative: � 1 if vertex v is the representative of a component z v = v ∈ V 0 otherwise On Integer and Bilevel Formulations for the k -Vertex Cut Problem (I. Ljubi´ c, F. Furini, E. Malaguti, P. Paronuzzi) 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend