the future of mse
play

The future of MSE: Towards real-time measurements and current - PowerPoint PPT Presentation

The future of MSE: Towards real-time measurements and current profile control in ITER and KSTAR M. F. M. de Bock a,b , D. U. B. Aussems a , R. Barnsley b , J. Chung c , G. Hommen a , J. A. van Hooft a , R. T. Huijgen a , J. Ko c , D. Johnson d ,


  1. The future of MSE: Towards real-time measurements and current profile control in ITER and KSTAR M. F. M. de Bock a,b , D. U. B. Aussems a , R. Barnsley b , J. Chung c , G. Hommen a , J. A. van Hooft a , R. T. Huijgen a , J. Ko c , D. Johnson d , F. M. Levinton e , M. Scheffer a , B. Stratton d , and M. Walsh b a Eindhoven University of Technology, Eindhoven, The Netherlands b ITER Organization, Saint-Paul-lez-Durance, France c National Fusion Research Institute, Daejeon, Korea d ITER-US, Princeton Plasma Physics Laboratory, Princeton, NJ, U.S.A. e Novaphotonics, Princeton, NJ, U.S.A.

  2. Motional Stark Effect • Current or q-profile • Instabilities, improved confinement, steady state … • Current profile control  real-time actuators, controller, sensor q 3 2 1 ρ T ρ 3/3/2013 PAGE 1

  3. Motional Stark Effect • MSE (Motional Stark Effect) diagnostic • Local, spectroscopic measurement of internal B-field (parts of it) g E = v x B + E s l E ’ m v k B 3/3/2013 PAGE 2

  4. Motional Stark Effect • MSE (Motional Stark Effect) diagnostic • Local, spectroscopic measurement of internal B-field (parts of it) g E = v x B + E s l E ’ m v k B • Line splitting ~ | E | 3/3/2013 PAGE 3

  5. Motional Stark Effect • MSE (Motional Stark Effect) diagnostic • Local, spectroscopic measurement of internal B-field (parts of it) g E = v x B + E s l E ’ m v k B • Line splitting ~ | E | • Line intensity π/σ ~ (1- cos 2 θ)/ (1+ cos 2 θ) , with cos θ = k.E/|E | 3/3/2013 PAGE 4

  6. Motional Stark Effect • MSE (Motional Stark Effect) diagnostic • Local, spectroscopic measurement of internal B-field (parts of it) g ~ γ E = v x B + E s l γ+π/2 ~ E ’ m v k B • Line splitting ~ | E | • Line intensity π/σ ~ (1- cos 2 θ)/ (1+ cos 2 θ) , with cos θ = k.E/|E | • Line polarization angle tan γ =E.m/E.l 3/3/2013 PAGE 5

  7. Motional Stark Effect • MSE (Motional Stark Effect) diagnostic • Local, spectroscopic measurement of internal B-field (parts of it) g E = v x B + E s l E ’ m v k • Conventional MSE B − Filter out π or σ line   A B A B A B − Measure polarization angle:  g  Z R 0 1 2 tan( )   A B A B A B  3 Z 4 R 5 − Convert to q- and j-profiles (EFIT, Ampère’s law …) 3/3/2013 PAGE 6

  8. Future challenges • In the measurement… • Wall reflections • Polarization dependent mirror degradation [1] • In the analysis… • Real-time polarization angles [2] [3] • Real-time q-profiles [1] H. Yuh et al., Poster HTPD conference 2012 (not published) [2] A. Malaquias et al., EPS 2003 ECA Vol. 27A, O-3.4C [3] G. Hommen et al., Plasma Phys. Control. Fusion Vol. 55 (2013) 025007 3/3/2013 PAGE 7

  9. Wall reflections (ITER) • Background signal … • Line integrated bulk bremsstrahlung • Reflections of divertor bremsstrahlung + incandescence A B C • unknown (coatings) partially polarized • spatial-temporally non-uniform [1] H. Yuh et al., Poster HTPD conference 2012 (not published) 3/3/2013 PAGE 8

  10. Wall reflections (ITER) • Background signal … • Line integrated bulk bremsstrahlung • Reflections of divertor bremsstrahlung + incandescence A B C A B C • Off-wavelength channels • in-situ calibration • cross-check in beam-off phases [1] H. Yuh et al., Poster HTPD conference 2012 (not published) 3/3/2013 PAGE 9

  11. Mirror degradation (ITER) • First mirror (FM) exposed to plasma … • Imaging diagnostic, low signal  Large aperture • Deposition dominated location aperture FM • Coating affects reflection and polarization! [1] H. Yuh et al., Poster HTPD conference 2012 (not published) 3/3/2013 PAGE 10

  12. Mirror degradation (ITER) • First mirror (FM) exposed to plasma … • Coating affects reflection and polarization • Minimize effect by keeping incident angle close to normal [1] H. Yuh et al., Poster HTPD conference 2012 (not published) [2] A. Malaquias et al., EPS 2003 ECA Vol. 27A, O-3.4C 3/3/2013 PAGE 11

  13. Mirror degradation (ITER) • Line Splitting calibration of polarization measurement • LS not affected by reflection and polarization changes • No line overlap in ITER • But: relation to B more complicated than polarization [1] H. Yuh et al., Poster HTPD conference 2012 (not published) 3/3/2013 PAGE 12

  14. Mirror degradation (ITER) • Line Splitting calibration of polarization measurement • Cross-Calibration through equilibrium reconstruction • Simulations promising • but, very accurate fitting required • no test on yet current devices (KSTAR opportunity?) [1] H. Yuh et al., Poster HTPD conference 2012 (not published) 3/3/2013 PAGE 13

  15. Real-time MSE • q-profile control needs real-time MSE (e.g. ITER and KSTAR goals) • Real-time  1 st time right • correct interpretation  know the spectrum • minimize perturbing effects  filter “best” part of spectrum • minimize assumptions  retrieve “all” data from signal itself • stable and fast analysis • Following slides: KSTAR as test case • MSE on KSTAR not real-time in 1 st phase • but design is “real - time ready” 3/3/2013 PAGE 14

  16. Real-time MSE: spectrum simulation • Real-time  measurement 1 st time right • Good understanding MSE spectrum  good interpretation MSE measurement g E = v x B + E s l E ’ m v k B [4] M. De Bock et al., Rev. Sci. Instrum. Vol.79 (2008) 10F524 3/3/2013 PAGE 15

  17. Real-time MSE: spectrum simulation • Real-time  measurement 1 st time right • Good understanding MSE spectrum  good interpretation MSE measurement g E 1,a E 2,b l v a E ’ E 3,c m v b v c B 1 B 2 B 3 [4] M. De Bock et al., Rev. Sci. Instrum. Vol.79 (2008) 10F524 3/3/2013 PAGE 16

  18. Real-time MSE: spectrum simulation • Real-time  measurement 1 st time right • Good understanding MSE spectrum  good interpretation MSE measurement g E 1,a E 2,b l v a E ’ E 3,c m v b v c B 1 B 2 B 3 [4] M. De Bock et al., Rev. Sci. Instrum. Vol.79 (2008) 10F524 3/3/2013 PAGE 17

  19. Real-time MSE: spectrum simulation • Real-time  measurement 1 st time right • Good understanding MSE spectrum  good interpretation MSE measurement [9] J. Ko et al., KSTAR conference (2013) poster 25 [4] M. De Bock et al., Rev. Sci. Instrum. Vol.79 (2008) 10F524 3/3/2013 PAGE 18

  20. Real-time MSE: spectrum simulation • Real-time  measurement 1 st time right • Good understanding MSE spectrum  good interpretation MSE measurement beam 2 beam 1 beam 3 [5] M. De Bock et al., Rev. Sci. Instrum. Vol.83 (2012) 10D524 3/3/2013 PAGE 19

  21. Real-time MSE: spectrum simulation • Real-time  measurement 1 st time right • Good understanding MSE spectrum  good interpretation MSE measurement [9] J. Ko et al., KSTAR conference (2013) poster 25 [5] M. De Bock et al., Rev. Sci. Instrum. Vol.83 (2012) 10D524 3/3/2013 PAGE 20

  22. Real-time MSE: spectrum simulation • Real-time  measurement 1 st time right • Good understanding MSE spectrum  good interpretation MSE measurement beam 2 beam 1 beam 3 [5] M. De Bock et al., Rev. Sci. Instrum. Vol.83 (2012) 10D524 3/3/2013 PAGE 21

  23. Real-time MSE: Filter design • Optical filter width and shape • “smoothing” can reduce δγ , but too much increases it! • 2 cavity, 4A wide interference filter for KSTAR δγ [degrees] [5] M. De Bock et al., Rev. Sci. Instrum. Vol.83 (2012) 10D524 3/3/2013 PAGE 22

  24. Real-time MSE: Filter design • Optical filter central wavelength position • Fine tuning by tilting. • Can be done real-time to ensure optimal signal [5] M. De Bock et al., Rev. Sci. Instrum. Vol.83 (2012) 10D524 3/3/2013 PAGE 23

  25. Real-time MSE: Extracting all information • PEM polarization measurement • polarization  intensity modulation • base frequencies ( ω 1 and ω 2 ) E 1,a E 2,b • base retardances ( R 1 and R 2 ) v a E 3,c v b tan(2 g ) = J 2 ( R 2 ) I 2 w 1 v c • J 2 ( R 1 ) I 2 w 2 B 1 B 2 B 3 PEM1 harmonics PEM2 harmonics [5] M. De Bock et al., Rev. Sci. Instrum. Vol.83 (2012) 10D524 3/3/2013 PAGE 24

  26. Real-time MSE: Extracting all information • PEM polarization measurement tan(2 g ) = J 2 ( R 2 ) I 2 w 1 • J 2 ( R 1 ) I 2 w 2 E 1,a E 2,b • ω and I ω  extracted with PLL v a E 3,c v b • Retardance R ??? v c x (cm) B 1 B 2 B 3  1 set value on PEM controller y (cm) …. but profile on PEM itself!  average over PEM aperture [5] M. De Bock et al., Rev. Sci. Instrum. Vol.83 (2012) 10D524 3/3/2013 PAGE 25

  27. Real-time MSE: Extracting all information • PEM polarization measurement tan(2 g ) = J 2 ( R 2 ) I 2 w 1 • J 2 ( R 1 ) I 2 w 2 E 1,a E 2,b • Averaged retardance R from signal: v a E 3,c v b I 2 w 1 = - J 2 ( R 1 ) v c B 1 I 4 w 1 J 4 ( R 1 ) B 2 B 3 − measure up to 4 th harmonic [5] M. De Bock et al., Rev. Sci. Instrum. Vol.83 (2012) 10D524 3/3/2013 PAGE 26

  28. Real-time MSE: Synergy in analysis • Simple analysis: • 1 Phase Locked Loop per channel • Requires enough signal PEM 1 PEM 2 [5] M. De Bock et al., Rev. Sci. Instrum. Vol.83 (2012) 10D524 3/3/2013 PAGE 27

  29. Real-time MSE: Synergy in analysis • Simple analysis: 1 Phase Locked Loop per channel • Multi-channel analysis: • All channels go through same PEMs • Phase shift φ equal for all channels  use synergy of multi-channel analysis  more signal, more accurate locking, also applies to R PEM 1 PEM 2 [5] M. De Bock et al., Rev. Sci. Instrum. Vol.83 (2012) 10D524 3/3/2013 PAGE 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend