the factorization method for the reconstruction of
play

The Factorization Method for the Reconstruction of Inclusions - PowerPoint PPT Presentation

The Factorization Method for the Reconstruction of Inclusions Martin Hanke Institut f ur Mathematik Johannes Gutenberg-Universit at Mainz hanke@math.uni-mainz.de January 2007 Martin Hanke: The Factorization Method for the


  1. The Factorization Method for the Reconstruction of Inclusions Martin Hanke Institut f¨ ur Mathematik Johannes Gutenberg-Universit¨ at Mainz hanke@math.uni-mainz.de January 2007 Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  2. Overview Electrical Impedance Tomography Factorization Method Applications Implementation Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  3. Impedance Tomography Γ Ω σ : electric conductivity V u : electric potential E = − grad u : electric field J = σE : current field (Ohm’s law) f : imposed boundary current div( σ grad u ) = 0 in Ω σ ∂u � ∂ν = f on Γ Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  4. Neumann-Dirichlet-Operator � ( basis of L 2 { f j } : current pattern ⋄ (Γ) ) f j ( θ ) dθ = 0 Γ � { g j } : boundary potential on Γ g j ( θ ) dθ = 0 Γ Neumann-Dirichlet-Operator self-adjoint and positive isomorphism from H − 1 / 2 (Γ) ⋄  L 2 → L 2 ⋄ (Γ) − ⋄ (Γ) onto H 1 / 2  (Γ) Λ( σ ) : ⋄ Hilbert-Schmidt operator �− → f j g j  (Hilbert space structure !) ˜ given data : Λ ≈ Λ( σ ) Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  5. The Goal Find all discontinuities of the conductivity σ Γ Ω V  1 in Ω \ D  D σ ( x ) = κ ( x ) < 1 in D  σ is uniquely determined ( A STALA , P ¨ ARINTA , 2003 ) AIV ¨ the problem is severely ill-posed ( A LLESANDRINI , 1988 ) Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  6. Factorization Method ˜ Λ − Λ = LF L ′ Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  7. The Range Space Consider the differences in the boundary potentials : 1 0 . 5 � 0 − 0 . 5 − 1 π 2 π 0 π/ 2 3 π/ 2 What kind of information is in there ? ˜ notation: Λ = Λ( σ ) , Λ = Λ(1) Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  8. The Crucial Lemma Λ − Λ = LFL ′ : Factorization ˜ ∆ w = 0 in Ω \ D , � H − 1 / 2 ( ∂D ) → H 1 / 2 (Γ) , ⋄ ⋄ L : where � ϕ �→ w | Γ 0 on Γ , ∂w ∂ν = ϕ on ∂D Obviously holds R (˜ Λ − Λ) ⊂ R ( L ) : h = (˜ Λ − Λ) f h = v | Γ , v = ˜ u − u , � and v is a harmonic function in Ω \ D with ∂ν = ∂ ˜ ∂v ∂u − ∂u u ∂ν = f − f = 0 on Γ Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  9. The Range of ˜ Λ − Λ Assumption: Ω \ D can be reflected completely into D Ω Let (Ω \ D ) ′ be the reflected set, and D Ω ′ = D \ (Ω \ D ) ′ be the coloured set Ω ′ in the sketch Theorem : R (˜ Λ − Λ) is the set of traces on Γ of all harmonic functions ∂v � v ∈ H 1 ⋄ (Ω \ Ω ′ ) with Γ = 0 � ∂ν � Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  10. Main Result UHL , H., 1999 : B R ¨ Not R (˜ Λ − Λ) , but the somewhat larger space R ((˜ Λ − Λ) 1 / 2 ) is the correct one, as the latter one coincides with R ( L ) Corollary : The boundary values h z,d of a (modified) dipole potential belong to R ((˜ Λ − Λ) 1 / 2 ) , if and only if z ∈ D d for the unit circle : h z,d ( x ) = d · grad N z ( x ) = 1 ( z − x ) · d | z − x | 2 π Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  11. Applications Impedance tomography for mammography Impedance tomography in the half space Nondestructive testing of materials Detection of land mines Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  12. Mammography Mainz system for mammography: a typical reconstruction ( A ZZOUZ , H., O ESTERLEIN , S CHAPPEL , 2006 ) : Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  13. Half Space Geometry The half space is of particular interest for some applications (e.g., in geophysics) Example: Ω = R 3 + with x = ( ξ, η, ζ ) and ζ > 0 measurements: Γ 0 = [ − 1 , 1] 2 ⊂ Γ boundary: Γ = { ζ = 0 } , a typical reconstruction ( H., S CHAPPEL , 2006 ) : original: reconstruction: Γ 0 Γ 0 Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  14. Nondestructive Testing Investigation of a homogeneous conductor for (insulating) cracks a typical reconstruction: ( B R ¨ UHL , H., P IDCOCK , 2001 ) 1 0.8 0.6 0.4 0.2 0 Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  15. Detection of Land Mines Interdisciplinary BMBF project: Metal detectors for Humanitarian Demining: Development potentials for data analysis and measurement techniques extension of the factorization method for the full Maxwell equations in a layered (or even more complicated) background U = L T L F Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  16. Detection of Land Mines Multistatic ( 6 × 6 ) arrangement of commercial off-the-shelf metal detectors: Example: reconstruction of a torus with a diameter of 6 cm and a height of 2 cm, placed 10 cm below the ground (wave length ≈ 300 km) G EBAUER , H., K IRSCH , M UNIZ , S CHNEIDER , 2005 Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  17. Implementation (˜ Λ − Λ) 1 / 2 � � iff z ∈ D h z,d ∈ R Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  18. Picard Criterion h z,d ∈ R ((˜ Λ − Λ) 1 / 2 ) z ∈ D iff (˜ spectral decomposition : Λ − Λ) v j = λ j v j , j = 1 , 2 , . . . ∞ � v j , h z,d � 2 � z ∈ D < ∞ iff λ j j =1 Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  19. Interactive Tool Our algorithm is set up for interactive numerical experiments on the web http://numerik.mathematik.uni-mainz.de/geit B R ¨ UHL , G EBAUER , 2002 Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  20. A MUSIC-Type Algorithm MUSIC-Algorithm (for inverse scattering problems): Determine a finite number of scatterers as fictitious point sources D EVANEY , C HENEY , K IRSCH , ... Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  21. Impedance Tomography Observation ( B R ¨ UHL , H., V OGELIUS , 2002 , A MMARI ET AL , 2004 , ... ): Given p “small” inclusions, the set R (˜ Λ − Λ) has dimension 2 p , essentially, and is spanned by dipoles placed in the centers of the inclusions −2 −3 10 10 −4 −6 10 10 −6 −9 10 10 −8 −12 10 10 −10 −15 10 10 Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  22. MUSIC from B R ¨ UHL , H., V OGELIUS , 2002 Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  23. An Example with Real Data data have been kindly provided by RPI Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

  24. Detection of Land Mines Work in progress: Extend this asymptotic result to the mine problem A MMARI , G RIESMAIER , H., 2006 , G RIESMAIER , 2007 a typical reconstruction (from G RIESMAIER , 2007 ) : −5 10 −6 10 −7 10 −8 10 0 10 20 30 wave number: k = 4 . 2 · 10 − 4 m − 1 Martin Hanke: ”The Factorization Method for the Reconstruction of Inclusions” http://numerik.mathematik.uni-mainz.de

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend