the effects of transformations on the optimal set in
play

The Effects of Transformations on the Optimal Set in Interval Linear - PowerPoint PPT Presentation

The Effects of Transformations on the Optimal Set in Interval Linear Programming 1 Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University 2 Faculty of Informatics and Statistics, University of Economics, Prague


  1. The Effects of Transformations on the Optimal Set in Interval Linear Programming 1 Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University 2 Faculty of Informatics and Statistics, University of Economics, Prague The 14th International Symposium on Operations Research in Slovenia (SOR’17), Bled Elif Garajová 1 (with Milan Hladík 1 & Miroslav Rada 2 )

  2. approximation and rounding estimating the future inexact measurements Interval Linear Programming €25 6 c €27 1 a 5 0 05 g b 3 14159 1 Consider a linear programming problem . . . minimize c T x subject to Ax ≤ b

  3. Interval Linear Programming 1 approximation and rounding b ≈ 3 . 14159 Consider a linear programming problem . . . minimize c T x subject to Ax ≤ b estimating the future €25 . 6 ≤ c ≤ €27 . 1 inexact measurements a = 5 ± 0 . 05 g

  4. Interval Linear Programming 1 approximation and rounding b = [ 3 . 141592 , 3 . 141593 ] Consider an interval linear programming problem . . . minimize c T x subject to A x ≤ b estimating the future c = [ 25 . 6 , 27 . 1 ] inexact measurements a = [ 4 . 95 , 5 . 05 ]

  5. Interval Linear Programming: Definitions • An interval linear program is a family of linear programs interval program, if x is a feasible/optimal solution for 2 minimize c T x subject to x ∈ M ( A , b ) , where A ∈ A , b ∈ b , c ∈ c and M ( A , b ) is the feasible set. • A linear program in the family is called a scenario . • A vector x is a (weakly) feasible/optimal solution to the some scenario with A ∈ A , b ∈ b , c ∈ c .

  6. Interval Linear Programming: Example maximize x 2 subject to • What are the possible feasible solutions? • Which solutions are optimal for some scenario? • What is the set/range of all optimal values? 3 [ − 1 , 1 ] x 1 + x 2 ≤ 0 x 2 ≤ 1

  7. Interval Linear Programming: Example 2 1 x 1 x 2 0 1 -1 4 maximize 3 1 -1 -2 -3 -4 subject to x 2 3 Let's traverse through this! [ − 1 , 1 ] x 1 + x 2 ≤ 0 x 2 ≤ 1 − 1 − 1

  8. Interval Linear Programming: Example 2 1 x 1 x 2 0 1 -1 4 maximize 3 1 -1 -2 -3 -4 subject to x 2 3 Let's traverse through this! [ − 1 , 1 ] x 1 + x 2 ≤ 0 x 2 ≤ 1 − 0 . 5 − 1

  9. Interval Linear Programming: Example 2 1 x 1 x 2 0 1 -1 4 maximize 3 1 -1 -2 -3 -4 subject to x 2 3 Let's traverse through this! [ − 1 , 1 ] x 1 + x 2 ≤ 0 x 2 ≤ 1 − 0 . 33 − 1

  10. Interval Linear Programming: Example 2 1 x 1 x 2 0 1 -1 4 maximize 3 1 -1 -2 -3 -4 subject to x 2 3 Let's traverse through this! [ − 1 , 1 ] x 1 + x 2 ≤ 0 x 2 ≤ 1 − 0 . 25 − 1

  11. Interval Linear Programming: Example maximize 0 1 x 1 x 2 0 1 -1 4 3 2 1 -1 -2 -3 -4 subject to x 2 3 Let's traverse through this! [ − 1 , 1 ] x 1 + x 2 ≤ 0 x 2 ≤ 1 − 1

  12. Interval Linear Programming: Example 2 1 x 1 x 2 0 1 -1 4 maximize 3 1 -1 -2 -3 -4 subject to x 2 3 Let's traverse through this! [ − 1 , 1 ] x 1 + x 2 ≤ 0 x 2 ≤ 1 0 . 25 − 1

  13. Interval Linear Programming: Example 2 1 x 1 x 2 0 1 -1 4 maximize 3 1 -1 -2 -3 -4 subject to x 2 3 Let's traverse through this! [ − 1 , 1 ] x 1 + x 2 ≤ 0 x 2 ≤ 1 0 . 33 − 1

  14. Interval Linear Programming: Example 2 1 x 1 x 2 0 1 -1 4 maximize 3 1 -1 -2 -3 -4 subject to x 2 3 Let's traverse through this! [ − 1 , 1 ] x 1 + x 2 ≤ 0 x 2 ≤ 1 0 . 5 − 1

  15. Interval Linear Programming: Example maximize 1 1 x 1 x 2 0 1 -1 4 3 2 1 -1 -2 -3 -4 subject to x 2 3 Let's traverse through this! [ − 1 , 1 ] x 1 + x 2 ≤ 0 x 2 ≤ 1 − 1

  16. Interval Linear Programming: Example 2 x 1 x 2 0 1 -1 4 3 1 maximize -1 -2 -3 -4 subject to x 2 3 [ − 1 , 1 ] x 1 + x 2 ≤ 0 x 2 ≤ 1 Optimal values: { 0 , 1 }

  17. Overview of Basic Results Feasible solutions: Optimal values: • Best optimal value (inequalities): • Worst optimal value (inequalities): Optimal solutions: • Special cases, approximations, … 4 • Oettli–Prager: x solves A x = b ⇔ | A c x − b c | ≤ A ∆ | x | + b ∆ • Gerlach: x solves A x ≤ b ⇔ A c x − A ∆ | x | ≤ b For each s ∈ {± 1 } n solve min ( c c − D s c ∆ ) T x s. t. ( A c − A ∆ D s ) x ≤ b , D s x ≥ 0 T y ≤ c , A T y ≥ c , y ≤ 0 max b T y s. t. A

  18. x 1 x 2 The solution 0 0 is now optimal, too! ...but the feasible set is the same! (Li, 2015) Dependency Problem (I) max 0 1 x 2 0 x 2 x 1 0 x 2 x 1 s. t. x 1 max s. t. x 1 5 [ 0 , 1 ] x 1 − x 2 = 0 , x 2 ≤ 1 , x 1 , x 2 ≥ 0 . Optimal set: { ( x 1 , x 2 ) ∈ R 2 : x 1 ∈ [ 1 , ∞ ) and x 2 = 1 }

  19. The solution 0 0 is now optimal, too! ...but the feasible set is the same! (Li, 2015) Dependency Problem (I) max max x 1 s. t. s. t. x 1 5 [ 0 , 1 ] x 1 − x 2 = 0 , [ 0 , 1 ] x 1 − x 2 ≤ 0 , x 2 ≤ 1 , [ 0 , 1 ] x 1 − x 2 ≥ 0 , x 1 , x 2 ≥ 0 . x 2 ≤ 1 , x 1 , x 2 ≥ 0 . Optimal set: { ( x 1 , x 2 ) ∈ R 2 : x 1 ∈ [ 1 , ∞ ) and x 2 = 1 }

  20. ...but the feasible set is the same! (Li, 2015) Dependency Problem (I) max max x 1 s. t. x 1 s. t. 5 [ 0 , 1 ] x 1 − x 2 = 0 , 1 x 1 − x 2 ≤ 0 , x 2 ≤ 1 , 0 x 1 − x 2 ≥ 0 , x 1 , x 2 ≥ 0 . x 2 ≤ 1 , x 1 , x 2 ≥ 0 . Optimal set: { ( x 1 , x 2 ) ∈ R 2 : x 1 ∈ [ 1 , ∞ ) and x 2 = 1 } The solution ( 0 , 0 ) is now optimal, too!

  21. Dependency Problem (I) max Wei Li. A note on dependency between interval linear systems (2015). max x 1 s. t. s. t. x 1 5 [ 0 , 1 ] x 1 − x 2 = 0 , [ 0 , 1 ] x 1 − x 2 ≤ 0 , x 2 ≤ 1 , [ 0 , 1 ] x 1 − x 2 ≥ 0 , x 1 , x 2 ≥ 0 . x 2 ≤ 1 , x 1 , x 2 ≥ 0 . Optimal set: { ( x 1 , x 2 ) ∈ R 2 : x 1 ∈ [ 1 , ∞ ) and x 2 = 1 } The solution ( 0 , 0 ) is now optimal, too! ...but the feasible set is the same! (Li, 2015)

  22. Dependency Problem (II) Example (Hladík, 2012) All real numbers are now feasible solutions, because we can 6 [ 1 , 2 ] x + − [ 1 , 2 ] x − ≤ 2 , x + , x − ≥ 0 [ 1 , 2 ] x ≤ 2 → Original feasible set: ( −∞ , 2 ] Consider the new scenario 1 x + − 2 x − ≤ 2 , x + , x − ≥ 0… express any real x as x = x + − x − , where x + = max ( 2 x , 0 ) and x − = | x | .

  23. What if A is fixed? Transformations: The General Case 7 min c T x : A x = b , x ≥ 0 transitivity min c T x : min c T x : A x ≤ b , x ≥ 0 A x ≤ b

  24. Transformations: The General Case 7 min c T x : A x = b , x ≥ 0 transitivity min c T x : min c T x : A x ≤ b , x ≥ 0 A x ≤ b What if A is fixed?

  25. b 1 x b 3 x Splitting Equations into Inequalities 0 x optimal for min c T x Ax b b 3 Ax 0 Ax Theorem 1 x optimal for scenario min c T x b 2 Proof idea: is equal to the optimal solution set of the program The optimal solution set of the interval linear program 8 min c T x : Ax = b , x ≥ 0 min c T x : Ax ≤ b 1 , − Ax ≤ − b 2 , x ≥ 0 with b 1 = b 2 = b .

  26. Splitting Equations into Inequalities Theorem 1 The optimal solution set of the interval linear program is equal to the optimal solution set of the program Proof idea: 8 min c T x : Ax = b , x ≥ 0 min c T x : Ax ≤ b 1 , − Ax ≤ − b 2 , x ≥ 0 with b 1 = b 2 = b . x ∗ optimal for scenario min c T x : b 2 ≤ Ax ≤ b 1 , x ≥ 0 ⇒ Ax ∗ = b 3 ∈ b ⇒ x ∗ optimal for min c T x : Ax = b 3 , x ≥ 0

  27. c 2 c 1 Imposing Non-negativity Proof idea: b . 3 x Ax c . Then, x is optimal for min c T c 3 A T y For an optimal x , we have by dual feasibility some y with 9 Theorem 2 min c T Let S denote the optimal solution set of min c T x : Ax ≤ b and let S ′ be the optimal solution set of the program 1 x + − c T 2 x − : Ax + − Ax − ≤ b , x + , x − ≥ 0 with c 1 = c 2 = c . Then, the following properties hold: • If x ∈ S , then there is ( x + , x − ) ∈ S ′ with x = x + − x − . • If ( x + , x − ) ∈ S ′ , then x + − x − ∈ S .

  28. Imposing Non-negativity Theorem 2 min c T Proof idea: 9 Let S denote the optimal solution set of min c T x : Ax ≤ b and let S ′ be the optimal solution set of the program 1 x + − c T 2 x − : Ax + − Ax − ≤ b , x + , x − ≥ 0 with c 1 = c 2 = c . Then, the following properties hold: • If x ∈ S , then there is ( x + , x − ) ∈ S ′ with x = x + − x − . • If ( x + , x − ) ∈ S ′ , then x + − x − ∈ S . For an optimal x ∗ , we have by dual feasibility some y ∗ with A T y ∗ = c 3 ∈ [ c 2 , c 1 ] ⊆ c . Then, x ∗ is optimal for min c T 3 x : Ax ≤ b .

  29. 10 Transformations: The Special Case min c T x : Ax = b , x ≥ 0 transitivity min c T x : min c T x : Ax ≤ b Ax ≤ b , x ≥ 0

  30. Transformations: The Special Case 10 min c T x : Ax = b , x ≥ 0 transitivity T h e o r e m 1 min c T x : min c T x : Ax ≤ b Ax ≤ b , x ≥ 0

  31. Transformations: The Special Case Theorem 2 10 min c T x : Ax = b , x ≥ 0 transitivity T h e transitivity o r e m 1 min c T x : min c T x : Ax ≤ b Ax ≤ b , x ≥ 0

  32. Conclusion • In interval linear programming, the basic transformations may change the feasible/optimal set and other properties of a program. • We have shown that the transformations do not affect the optimal set for problems with a fixed coefficient matrix (they may still change other properties!). • Thus, we can directly generalize results concerning the optimal set of a particular type of programs to other types. 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend