the chaotic pendulum i
play

The Chaotic Pendulum I Continuous Nonlinear Dynamics Rubin H Landau - PowerPoint PPT Presentation

ODE Free Pend Phase Space Implementation-Assessment The Chaotic Pendulum I Continuous Nonlinear Dynamics Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Pez, & Bordeianu with Support


  1. ODE Free Pend Phase Space Implementation-Assessment The Chaotic Pendulum I Continuous Nonlinear Dynamics Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support from the National Science Foundation Course: Computational Physics I 1 / 58

  2. l1 m1 m2 θ 2 l2 θ 1 m I θ α α f ODE Free Pend Phase Space Implementation-Assessment Problem: Realistic Single or Double Pendulum Simulate Nonlinear, Chaotic System loading TwoPend Driven single pendulum Large oscillations, even over-the-top Free, double pendulum 2 / 58

  3. I m f α α θ ODE Free Pend Phase Space Implementation-Assessment Chaotic Pendulum ODE � τ = I d 2 θ Newton’s Laws for Rotational Motion dt 2 Gravitation τ : − mgl sin θ − β ˙ Friction τ : θ External τ : τ 0 cos ω t I d 2 θ dt 2 = − mgl sin θ − β d θ dt + τ 0 cos ω t (1) d 2 θ 0 sin θ − α d θ dt 2 = − ω 2 dt + f cos ω t (2) ω 0 = mgl α = β f = τ 0 , I , I I 3 / 58

  4. I m f α α θ ODE Free Pend Phase Space Implementation-Assessment Chaotic Pendulum ODE � τ = I d 2 θ Newton’s Laws for Rotational Motion dt 2 Gravitation τ : − mgl sin θ − β ˙ Friction τ : θ External τ : τ 0 cos ω t I d 2 θ dt 2 = − mgl sin θ − β d θ dt + τ 0 cos ω t (1) d 2 θ 0 sin θ − α d θ dt 2 = − ω 2 dt + f cos ω t (2) ω 0 = mgl α = β f = τ 0 , I , I I 4 / 58

  5. I m f α α θ ODE Free Pend Phase Space Implementation-Assessment Chaotic Pendulum ODE � τ = I d 2 θ Newton’s Laws for Rotational Motion dt 2 Gravitation τ : − mgl sin θ − β ˙ Friction τ : θ External τ : τ 0 cos ω t I d 2 θ dt 2 = − mgl sin θ − β d θ dt + τ 0 cos ω t (1) d 2 θ 0 sin θ − α d θ dt 2 = − ω 2 dt + f cos ω t (2) ω 0 = mgl α = β f = τ 0 , I , I I 5 / 58

  6. I m f α α θ ODE Free Pend Phase Space Implementation-Assessment Chaotic Pendulum ODE � τ = I d 2 θ Newton’s Laws for Rotational Motion dt 2 Gravitation τ : − mgl sin θ − β ˙ Friction τ : θ External τ : τ 0 cos ω t I d 2 θ dt 2 = − mgl sin θ − β d θ dt + τ 0 cos ω t (1) d 2 θ 0 sin θ − α d θ dt 2 = − ω 2 dt + f cos ω t (2) ω 0 = mgl α = β f = τ 0 , I , I I 6 / 58

  7. I m f α α θ ODE Free Pend Phase Space Implementation-Assessment Chaotic Pendulum ODE � τ = I d 2 θ Newton’s Laws for Rotational Motion dt 2 Gravitation τ : − mgl sin θ − β ˙ Friction τ : θ External τ : τ 0 cos ω t I d 2 θ dt 2 = − mgl sin θ − β d θ dt + τ 0 cos ω t (1) d 2 θ 0 sin θ − α d θ dt 2 = − ω 2 dt + f cos ω t (2) ω 0 = mgl α = β f = τ 0 , I , I I 7 / 58

  8. α f α m I θ ODE Free Pend Phase Space Implementation-Assessment Chaotic Pendulum ODE ˙ y = � � f ( � y , t ) Standard ODE Form (rk4): d 2 θ 0 sin θ − α d θ dt 2 = − ω 2 dt + f cos ω t (1) 2 nd O t-dependent nonlinear ODE sin θ ≃ θ − θ 3 / 3 ! · · · Nonlinearity: y ( 0 ) = θ ( t ) , y ( 1 ) = d θ ( t ) dt dy ( 0 ) = y ( 1 ) (2) dt dy ( 1 ) 0 sin y ( 0 ) − α y ( 1 ) + f cos ω t = − ω 2 (3) dt 8 / 58

  9. α f α m I θ ODE Free Pend Phase Space Implementation-Assessment Chaotic Pendulum ODE ˙ y = � � f ( � y , t ) Standard ODE Form (rk4): d 2 θ 0 sin θ − α d θ dt 2 = − ω 2 dt + f cos ω t (1) 2 nd O t-dependent nonlinear ODE sin θ ≃ θ − θ 3 / 3 ! · · · Nonlinearity: y ( 0 ) = θ ( t ) , y ( 1 ) = d θ ( t ) dt dy ( 0 ) = y ( 1 ) (2) dt dy ( 1 ) 0 sin y ( 0 ) − α y ( 1 ) + f cos ω t = − ω 2 (3) dt 9 / 58

  10. α f α m I θ ODE Free Pend Phase Space Implementation-Assessment Chaotic Pendulum ODE ˙ y = � � f ( � y , t ) Standard ODE Form (rk4): d 2 θ 0 sin θ − α d θ dt 2 = − ω 2 dt + f cos ω t (1) 2 nd O t-dependent nonlinear ODE sin θ ≃ θ − θ 3 / 3 ! · · · Nonlinearity: y ( 0 ) = θ ( t ) , y ( 1 ) = d θ ( t ) dt dy ( 0 ) = y ( 1 ) (2) dt dy ( 1 ) 0 sin y ( 0 ) − α y ( 1 ) + f cos ω t = − ω 2 (3) dt 10 / 58

  11. α f α m I θ ODE Free Pend Phase Space Implementation-Assessment Chaotic Pendulum ODE ˙ y = � � f ( � y , t ) Standard ODE Form (rk4): d 2 θ 0 sin θ − α d θ dt 2 = − ω 2 dt + f cos ω t (1) 2 nd O t-dependent nonlinear ODE sin θ ≃ θ − θ 3 / 3 ! · · · Nonlinearity: y ( 0 ) = θ ( t ) , y ( 1 ) = d θ ( t ) dt dy ( 0 ) = y ( 1 ) (2) dt dy ( 1 ) 0 sin y ( 0 ) − α y ( 1 ) + f cos ω t = − ω 2 (3) dt 11 / 58

  12. α f α m I θ ODE Free Pend Phase Space Implementation-Assessment Chaotic Pendulum ODE ˙ y = � � f ( � y , t ) Standard ODE Form (rk4): d 2 θ 0 sin θ − α d θ dt 2 = − ω 2 dt + f cos ω t (1) 2 nd O t-dependent nonlinear ODE sin θ ≃ θ − θ 3 / 3 ! · · · Nonlinearity: y ( 0 ) = θ ( t ) , y ( 1 ) = d θ ( t ) dt dy ( 0 ) = y ( 1 ) (2) dt dy ( 1 ) 0 sin y ( 0 ) − α y ( 1 ) + f cos ω t = − ω 2 (3) dt 12 / 58

  13. m I θ ODE Free Pend Phase Space Implementation-Assessment Start Simply: Free Oscillations (Test Algorithm & Physics) Ignore Friction & External Torques ( f = α = 0) ¨ θ = − ω 2 0 sin θ (1) ¨ θ ≃ − ω 2 0 θ (linear, θ ≃ 0) ⇒ θ ( t ) = θ 0 sin ( ω 0 t + φ ) (2) (1): ”Analytic solution”; sort of: � θ m d θ T ∝ (3) � 1 / 2 sin 2 ( θ m / 2 ) − sin 2 ( θ/ 2 ) � 0 13 / 58

  14. m I θ ODE Free Pend Phase Space Implementation-Assessment Start Simply: Free Oscillations (Test Algorithm & Physics) Ignore Friction & External Torques ( f = α = 0) ¨ θ = − ω 2 0 sin θ (1) ¨ θ ≃ − ω 2 0 θ (linear, θ ≃ 0) ⇒ θ ( t ) = θ 0 sin ( ω 0 t + φ ) (2) (1): ”Analytic solution”; sort of: � θ m d θ T ∝ (3) � 1 / 2 sin 2 ( θ m / 2 ) − sin 2 ( θ/ 2 ) � 0 14 / 58

  15. m I θ ODE Free Pend Phase Space Implementation-Assessment Start Simply: Free Oscillations (Test Algorithm & Physics) Ignore Friction & External Torques ( f = α = 0) ¨ θ = − ω 2 0 sin θ (1) ¨ θ ≃ − ω 2 0 θ (linear, θ ≃ 0) ⇒ θ ( t ) = θ 0 sin ( ω 0 t + φ ) (2) (1): ”Analytic solution”; sort of: � θ m d θ T ∝ (3) � 1 / 2 sin 2 ( θ m / 2 ) − sin 2 ( θ/ 2 ) � 0 15 / 58

  16. m I θ ODE Free Pend Phase Space Implementation-Assessment Start Simply: Free Oscillations (Test Algorithm & Physics) Ignore Friction & External Torques ( f = α = 0) ¨ θ = − ω 2 0 sin θ (1) ¨ θ ≃ − ω 2 0 θ (linear, θ ≃ 0) ⇒ θ ( t ) = θ 0 sin ( ω 0 t + φ ) (2) (1): ”Analytic solution”; sort of: � θ m d θ T ∝ (3) � 1 / 2 sin 2 ( θ m / 2 ) − sin 2 ( θ/ 2 ) � 0 16 / 58

  17. ODE Free Pend Phase Space Implementation-Assessment ¨ θ = − ω 2 Free Pendulum Implementation 0 sin θ Solve ODE with rk4 Initial conditions: { θ = 0, ˙ θ ( 0 ) � = 0}; increase ˙ θ ( 0 ) 1 Verify SHM ¨ θ = − ω 2 0 θ ⇒ ω = ω 0 = 2 π/ T = constant 2 Devise algorithm to determine period T ( 3 × θ = 0) 3 Determine T ( θ ) for realistic pendulum, compare 4 Verify as KE ( 0 ) ≤ 2 mgl : non harmonic oscillations 5 Verify ⇒ separatrix ( KE ( 0 ) → 2 mgl ), T → ∞ 6 Listen harmonic & anharmonic motion (Hear now) 7 Hear Data applet 8 17 / 58

  18. ODE Free Pend Phase Space Implementation-Assessment ¨ θ = − ω 2 Free Pendulum Implementation 0 sin θ Solve ODE with rk4 Initial conditions: { θ = 0, ˙ θ ( 0 ) � = 0}; increase ˙ θ ( 0 ) 1 Verify SHM ¨ θ = − ω 2 0 θ ⇒ ω = ω 0 = 2 π/ T = constant 2 Devise algorithm to determine period T ( 3 × θ = 0) 3 Determine T ( θ ) for realistic pendulum, compare 4 Verify as KE ( 0 ) ≤ 2 mgl : non harmonic oscillations 5 Verify ⇒ separatrix ( KE ( 0 ) → 2 mgl ), T → ∞ 6 Listen harmonic & anharmonic motion (Hear now) 7 Hear Data applet 8 18 / 58

  19. ODE Free Pend Phase Space Implementation-Assessment ¨ θ = − ω 2 Free Pendulum Implementation 0 sin θ Solve ODE with rk4 Initial conditions: { θ = 0, ˙ θ ( 0 ) � = 0}; increase ˙ θ ( 0 ) 1 Verify SHM ¨ θ = − ω 2 0 θ ⇒ ω = ω 0 = 2 π/ T = constant 2 Devise algorithm to determine period T ( 3 × θ = 0) 3 Determine T ( θ ) for realistic pendulum, compare 4 Verify as KE ( 0 ) ≤ 2 mgl : non harmonic oscillations 5 Verify ⇒ separatrix ( KE ( 0 ) → 2 mgl ), T → ∞ 6 Listen harmonic & anharmonic motion (Hear now) 7 Hear Data applet 8 19 / 58

  20. ODE Free Pend Phase Space Implementation-Assessment ¨ θ = − ω 2 Free Pendulum Implementation 0 sin θ Solve ODE with rk4 Initial conditions: { θ = 0, ˙ θ ( 0 ) � = 0}; increase ˙ θ ( 0 ) 1 Verify SHM ¨ θ = − ω 2 0 θ ⇒ ω = ω 0 = 2 π/ T = constant 2 Devise algorithm to determine period T ( 3 × θ = 0) 3 Determine T ( θ ) for realistic pendulum, compare 4 Verify as KE ( 0 ) ≤ 2 mgl : non harmonic oscillations 5 Verify ⇒ separatrix ( KE ( 0 ) → 2 mgl ), T → ∞ 6 Listen harmonic & anharmonic motion (Hear now) 7 Hear Data applet 8 20 / 58

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend