double pendulum
play

Double Pendulum Josh Altic May 15, 2008 Josh Altic Double - PowerPoint PPT Presentation

Double Pendulum Josh Altic May 15, 2008 Josh Altic Double Pendulum Position x 1 x 2 O 1 L 1 x 1 = L 1 sin( 1 ) x 2 = L 1 sin( 1 ) + L 2 sin( 2 ) m 1 y 1 L 2 y 1 = L 1 cos( 1 ) 2 m 2 y 2 = L 1 cos( 1 ) L 2 cos(


  1. Double Pendulum Josh Altic May 15, 2008 Josh Altic Double Pendulum

  2. Position x 1 x 2 O θ 1 L 1 x 1 = L 1 sin( θ 1 ) x 2 = L 1 sin( θ 1 ) + L 2 sin( θ 2 ) m 1 y 1 L 2 y 1 = − L 1 cos( θ 1 ) θ 2 m 2 y 2 = − L 1 cos( θ 1 ) − L 2 cos( θ 2 ) y 2 Josh Altic Double Pendulum

  3. Potential Energy: the sum of the potential energy of each mass P = m 1 gy 1 + m 2 gy 2 P = − m 1 gL 1 cos( θ 1 ) − m 2 g ( L 1 cos( θ 1 ) + L 2 cos( θ 2 )) Josh Altic Double Pendulum

  4. Kinetic Energy in General We know that K = 1 / 2 mv 2 . Which brings us to x 2 + ˙ y 2 ) . K = 1 / 2 m (˙ Josh Altic Double Pendulum

  5. Kinetic Energy in the double pendulum system x 2 y 2 x 2 y 2 K = 1 / 2 m 1 (˙ 1 + ˙ 1 ) + 1 / 2 m 2 (˙ 2 + ˙ 2 ) . differentiating: position: x 1 = L 1 cos( θ 1 ) ˙ ˙ θ 1 x 1 = L 1 sin( θ 1 ) x 2 = L 1 cos( θ 1 ) ˙ θ 1 + L 2 cos( θ 2 ) ˙ ˙ θ 2 x 2 = L 1 sin( θ 1 ) + L 2 sin( θ 2 ) y 1 = L 1 sin( θ 1 ) ˙ y 1 = − L 1 cos( θ 1 ) ˙ θ 1 y 2 = − L 1 cos( θ 1 ) − L 2 cos( θ 2 ) y 2 = L 1 sin( θ 1 ) ˙ θ 1 + L 2 sin( θ 2 ) ˙ ˙ θ 2 K = 1 / 2 m 1 ˙ 1 + 1 / 2 m 2 [ ˙ 1 + ˙ 2 + 2 ˙ θ 1 L 1 ˙ θ 2 1 L 2 θ 2 1 L 2 θ 2 2 L 2 θ 1 L 2 cos( θ 1 − θ 2 )] . Josh Altic Double Pendulum

  6. Lagrangian in General The Lagrangian( L ) of a system is defined to be the difference of the kinetic energy and the potential energy. L = K − P . For the Lagrangian of a system this Euler-Lagrange differential equation must be true: � ∂ L � d − ∂ L ∂θ = 0 ∂ ˙ dt θ Josh Altic Double Pendulum

  7. the Lagrangian of our double pendulum system K = 1 / 2 m 1 ˙ 1 + 1 / 2 m 2 [ ˙ 1 + ˙ 2 + 2 ˙ θ 1 L 1 ˙ θ 2 1 L 2 θ 2 1 L 2 θ 2 2 L 2 θ 2 L 2 cos( θ 1 − θ 2 )] . P = − ( m 1 + m 2 ) gL 1 cos( θ 1 ) − m 2 L 2 g cos( θ 2 ) In our case the Lagrangian is 1 ˙ 2 ˙ 2 + m 2 L 1 L 2 ˙ θ 1 ˙ L = 1 / 2( m 1 + m 2 ) L 2 θ 2 1 + 1 / 2 m 2 L 2 θ 2 θ 2 cos( θ 1 + θ 2 )+ ( m 1 + m 2 ) gL 1 cos( θ 1 ) + m 2 L 2 g cos( θ 2 ) . Josh Altic Double Pendulum

  8. Partials of the Lagrangian for θ 1 1 ˙ 2 ˙ 2 + m 2 L 1 L 2 ˙ θ 1 ˙ L = 1 / 2( m 1 + m 2 ) L 2 θ 2 1 + 1 / 2 m 2 L 2 θ 2 θ 2 cos( θ 1 − θ 2 )+ ( m 1 + m 2 ) gL 1 cos( θ 1 ) + m 2 L 2 g cos( θ 2 ) Thus: ∂ L = − L 1 g ( m 1 + m 2 ) sin( θ 1 ) − m 2 L 1 L 2 ˙ θ 1 ˙ θ 2 sin( θ 1 − θ 2 ) ∂θ 1 ∂ L 1 ˙ θ 1 + m 2 L 1 L 2 ˙ = ( m 1 + m 2 ) L 2 θ 2 cos( θ 1 − θ 2 ) ∂ ˙ θ 1 � ∂ L � d 1 ¨ θ 1 + m 2 L 1 L 2 ¨ = ( m 1 + m 2 ) L 2 θ 2 cos( θ 1 − θ 2 ) ∂ ˙ dt θ 1 − m 2 L 1 L 2 ˙ θ 2 sin ( θ 1 − θ 2 )( ˙ θ 1 − ˙ θ 2 ) Josh Altic Double Pendulum

  9. Substituting into the Euler-Lagrange Equation � ∂ L � − ∂ L d ∂θ = 0 ∂ ˙ dt θ 1 ¨ θ 1 + m 2 L 1 L 2 ¨ θ 2 cos( θ 1 − θ 2 ) + m 2 L 1 L 2 ˙ ( m 1 + m 2 ) L 2 θ 2 2 sin( θ 1 − θ 2 )+ gL 1 ( m 1 + m 2 ) sin( θ 1 ) = 0 Simplifying and Solving for ¨ θ 1 : θ 1 = − m 2 L 2 ¨ θ 2 cos( θ 1 − θ 2 ) − m 2 L 2 ˙ θ 2 2 sin( θ 1 − θ 2 ) − ( m 1 + m 2 ) g sin( θ 1 ) ¨ ( m 1 + m 2 ) L 1 Josh Altic Double Pendulum

  10. Partials for θ 2 Once again the Lagrangian of the system is 1 ˙ 2 ˙ 2 + m 2 L 1 L 2 ˙ θ 1 ˙ L = 1 / 2( m 1 + m 2 ) L 2 θ 2 1 + 1 / 2 m 2 L 2 θ 2 θ 2 cos( θ 1 − θ 2 )+ ( m 1 + m 2 ) gL 1 cos( θ 1 ) + m 2 L 2 g cos( θ 2 ) ∂ L = m 2 L 1 L 2 ˙ θ 1 ˙ θ 2 sin( θ 1 − θ 2 ) − L 2 m 2 g sin( θ 2 ) ∂θ 2 ∂ L 2 ˙ θ 2 + m 2 L 1 L 2 ˙ = m 2 L 2 θ 1 cos( θ 1 − θ 2 ) ∂ ˙ θ 2 � ∂ L d � 2 ¨ θ 2 + m 2 L 1 L 2 ¨ = m 2 L 2 θ 1 cos( θ 1 − θ 2 ) ∂ ˙ dt θ 2 − m 2 L 1 L 2 ˙ θ 1 sin( θ 1 − θ 2 )( ˙ θ 1 − ˙ θ 2 ) Josh Altic Double Pendulum

  11. Substituting into the Euler-Lagrange equation for θ 2 � ∂ L � − ∂ L d ∂θ = 0 ∂ ˙ dt θ L 2 ¨ θ 2 + L 1 ¨ θ 1 cos( θ 1 − θ 2 ) − L 1 ˙ θ 2 1 sin( θ 1 − θ 2 ) + g sin( θ 2 ) = 0 . θ 2 = − L 1 ¨ θ 1 cos( θ 1 − θ 2 ) + L 1 ˙ θ 2 1 sin( θ 1 − θ 2 ) − g sin( θ 2 ) ¨ . L 2 Josh Altic Double Pendulum

  12. two dependent differential equations We now have two equations that both have ¨ θ 1 and ¨ θ 2 in them. θ 1 = − m 2 L 2 ¨ θ 2 cos( θ 1 − θ 2 ) − m 2 L 2 ˙ θ 2 2 sin( θ 1 − θ 2 ) − ( m 1 + m 2 ) g sin( θ 1 ) ¨ ( m 1 + m 2 ) L 1 θ 2 = − L 1 ¨ θ 1 cos( θ 1 − θ 2 ) + L 1 ˙ θ 2 1 sin( θ 1 − θ 2 ) − g sin( θ 2 ) ¨ . L 2 Josh Altic Double Pendulum

  13. creating two second order differential equations − m 2 L 1 ˙ θ 2 1 sin( θ 1 − θ 2 ) cos( θ 1 − θ 2 ) + gm 2 sin( θ 2 ) cos( θ 1 − θ 2 ) − m 2 L 2 ˙ θ 2 2 sin( θ 1 − θ 2 ) − ( m 1 + m 2 ) g sin( θ 1 ) ¨ θ 1 = L 1 ( m 1 + m 2 ) − m 2 L 1 cos 2 ( θ 1 − θ 2 ) m 2 L 2 ˙ θ 2 2 sin( θ 1 − θ 2 ) cos( θ 1 − θ 2 ) + g sin( θ 1 ) cos( θ 1 − θ 2 )( m 1 + m 2 ) + L 1 ˙ θ 2 1 sin( θ 1 − θ 2 )( m 1 + m 2 ) − g sin( θ 2 )( m 1 + m 2 ) ¨ θ 2 = L 2 ( m 1 + m 2 ) − m 2 L 2 cos 2 ( θ 1 − θ 2 ) Josh Altic Double Pendulum

  14. converting to a system of first order differential equations If I define new variables for θ 1 , ˙ θ 1 , θ 2 and ˙ θ 2 I can construct a system of four first order differential equations that I can then solve numerically. differentiating I get This gives me z 1 = ˙ ˙ θ 1 z 1 = θ 1 z 2 = ˙ z 2 = θ 2 ˙ θ 2 z 3 = ˙ z 3 = ¨ θ 1 ˙ θ 1 z 4 = ˙ z 4 = ¨ θ 2 . ˙ θ 2 . Josh Altic Double Pendulum

  15. A system of four first order differential equations z 1 = ˙ ˙ θ 1 z 2 = ˙ ˙ θ 2 − m 2 L 1 z 2 4 sin( z 1 − z 2 ) cos( z 1 − z 2 ) + gm 2 sin ( z 2 ) cos( z 1 − z 2 ) − m 2 L 2 z 2 4 sin( z 1 − z 2 ) − ( m 1 + m 2 ) g sin( z 1 ) z 3 = ˙ . L 1 ( m 1 + m 2 ) − m 2 L 1 cos 2 ( z 1 − z 2 ) m 2 L 2 z 2 4 sin( z 1 − z 2 ) cos( z 1 − z 2 ) + g sin( z 1 ) cos( z 1 − z 2 )( m 1 + m 2 ) + L 1 z 2 4 sin( z 1 − z 2 )( m 1 + m 2 ) − g sin( z 2 )( m 1 + m 2 ) z 4 = ˙ . L 2 ( m 1 + m 2 ) − m 2 L 2 cos 2 ( z 1 − z 2 ) Josh Altic Double Pendulum

  16. example of cyclical behavior of the system m1 m2 1.5 1 y1 and y2 0.5 0 −0.5 −1.5 −1 −0.5 0 0.5 1 1.5 x1 and x2 Josh Altic Double Pendulum

  17. example of cyclical behavior of the system m1 1.5 m2 1 0.5 y1 and y2 0 −0.5 −1 −1.5 −2 −2 −1 0 1 2 x1 and x2 Josh Altic Double Pendulum

  18. example of nearly cyclical behavior of the system 2 m1 1.5 m2 1 0.5 y1 and y2 0 −0.5 −1 −1.5 −2 −1 0 1 2 x1 and x2 Josh Altic Double Pendulum

  19. example of nearly cyclical behavior of the system 2 m1 1.5 m2 1 0.5 y1 and y2 0 −0.5 −1 −1.5 −2 −1 0 1 2 x1 and x2 Josh Altic Double Pendulum

  20. Example of Chaotic behavior of the system m1 1 m2 0.5 y1 and y2 0 −0.5 −1 −1.5 −2 −1 0 1 2 x1 and x2 Josh Altic Double Pendulum

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend