higher harmonics in sheared colloids divergence of the
play

Higher harmonics in sheared colloids: Divergence of the nonlinear - PowerPoint PPT Presentation

FOR1394 DFG Research Unit FOR1394 Nonlinear Response to Probe Vitrification Higher harmonics in sheared colloids: Divergence of the nonlinear response Matthias Fuchs Fachbereich Physik, Universit at Konstanz Japan-France Joint Seminar,


  1. FOR1394 DFG Research Unit FOR1394 Nonlinear Response to Probe Vitrification Higher harmonics in sheared colloids: Divergence of the nonlinear response Matthias Fuchs Fachbereich Physik, Universit¨ at Konstanz Japan-France Joint Seminar, YITP, Kyoto 2015

  2. FOR1394 FOR1394 FOR1394 Maxwell Model of linear response Viscous flow Hookian elasticity Viscous flow Hookian elasticity σ xy = η ∂v x ∂u x σ xy = G ∞ ∂y ∂y stress, viscosity, velocity gradient stress, elastic constant, strain Visco-elasticity (J.C. Maxwell, 1867) Visco-elasticity (J.C. Maxwell, 1867) � t dt ′ G ( t − t ′ ) ∂v x ( t ′ ) σ xy ( t ) = ∂y −∞ G ( t ) = G ∞ e − t/τ Fluid: Fluid: G ( t ) rapid G ( t ) rapid Solid: Solid: G ( t ) slow G ( t ) slow G ( t ) = η δ ( t ) , η = G ∞ τ G ( t ) = G ∞ 2 / 26

  3. FOR1394 FOR1394 FOR1394 Nonlinear response: FT Rheology G ( t, t ′ ) Non-time translational invariant G ( t, t ′ ) t � dt ′ ˙ γ ( t ′ ) G ( t, t ′ ) σ ( t ) = −∞ For the special case of oscillatory shear oscillatory shear: Input: γ ( t ) = γ 0 sin( ωt ) Output: � ∞ n =1 G ′ σ ( t ) = γ 0 n ( ω ) sin( nωt ) � ∞ n =1 G ′′ + γ 0 n ( ω ) cos( nωt ) [ fig: http://gain11.wordpress.com/2008/07/14/the-five-faces-of-distortion/ ] 3 / 26

  4. FOR1394 FOR1394 FOR1394 3rd Harmonic & cooperativity Biroli-Bouchaud theory ∗ Biroli-Bouchaud theory ∗ 3rd harmonic χ 3 ( ω ) diverges at glass transition χ 3 ( ω ) ∝ ∂χ 1 (2 ω ) ∂T (using: T c ( E ) = T c (0) + κ E 2 , FDT) χ 3 ∝ N corr (number of correlated particles) Dielectric spectroscopy ∗∗ Dielectric spectroscopy ∗∗ χ 3 ( ω ) & N corr measured [ ⋆ Tarzia, Biroli, Lefevre & Bouchaud JCP 132 , 054501 (2010)]; also Biroli & Bouchaud, PRB 72 064204 (2005)] [ ⋆⋆ Bauer, Lunkenheimer & Loidl, PRL 111 , 225702 (2013); also Crauste-Thibierge, Brun, Ladieu, L’Hote, Biroli, Bouchaud, PRL 104 , 165703 (2010)] 4 / 26

  5. FOR1394 FOR1394 FOR1394 Outline Nonlinear Dielectric Response Biroli-Bouchaud Theory Large Amplitude Oscillatory Shear (LAOS) strain Constitutive Equations in MCT-ITT Fourier Transform Rheology 3rd Harmonic Spectrum Scaling Laws Experiment Summary Nonlinear response of glass 5 / 26

  6. FOR1394 FOR1394 FOR1394 Part II Large Amplitude Oscillatory Shear Constitutive Equations in MCT-ITT 6 / 26

  7. FOR1394 FOR1394 FOR1394 Microscopic model Brownian particles in flow Brownian particles in flow Coupled random walks Coupled random walks � d y � dt r i − v solv ( r i ) ζ = F i + f i homogeneous flow v solv ( r ) = κ · r x e.g. simple shear F i interparticle force y f i random force ���� ���� ���� ���� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� x ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� � f α i ( t ) f β j ( t ′ ) � = 2 ζk B Tδ αβ δ ij δ ( t − t ′ ) ���� ���� z ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� v solv ��� ��� = ˙ γ ( t ) y x Generalized Green Kubo relation (+ MCT approximation) Generalized Green Kubo relation � t � t t ′ ds Ω † ( s ) σ � ( e ) / ( k B TV ) dt ′ � Tr { κ ( t ) · σ } e − σ ( t ) = −∞ 7 / 26

  8. FOR1394 FOR1394 FOR1394 Microscopic model Brownian particles in flow Brownian particles in flow Coupled random walks Coupled random walks � d y � dt r i − v solv ( r i ) ζ = F i + f i homogeneous flow v solv ( r ) = κ · r x e.g. simple shear F i interparticle force y f i random force ���� ���� ���� ���� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� x ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� � f α i ( t ) f β j ( t ′ ) � = 2 ζk B Tδ αβ δ ij δ ( t − t ′ ) ���� ���� z ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� v solv ��� ��� = ˙ γ ( t ) y x Generalized Green Kubo relation (+ MCT approximation) Generalized Green Kubo relation � t � t t ′ ds Ω † ( s ) σ � ( e ) / ( k B TV ) dt ′ � Tr { κ ( t ) · σ } e − σ ( t ) = −∞ 7 / 26

  9. FOR1394 FOR1394 FOR1394 Linear rheology in colloids Linear response moduli Linear response moduli PNIPAM microgels η ∞ (HI) added G ∞ ——- radius R H ( T ) ηω ↑ 1 / τ ∝ ω φ eff = 4 π 3 R 3 N [Siebenb¨ urger, Ballauff (2009)] ≈ 0 . 63 H V stress magnitudes with 50% error stress magnitudes 8 / 26

  10. FOR1394 FOR1394 FOR1394 Nonlinear rheology in colloids PNIPAM microgels Stress-strain relation in glass Stress-strain relation in glass 5 b) k B T /d 3 � 2 G c ∞ 1 Pe 0 = 10 -1 � radius R H ( T ) 10 -2 σ xy 10 -3 0.5 10 -4 10 -5 10 -6 0.1 1 γt ˙ scaling-law for ˙ γ → 0 (theo.) scaling-law 9 / 26

  11. FOR1394 FOR1394 FOR1394 Nonlinear rheology in colloids Stress-strain relation in glass Stress-strain relation in glass PNIPAM microgels φ eff = 0.65 ε = 10 -3 5 σ xy [ k B T/d 3 ] 2 radius R H ( T ) Pe 0 = 10 -1 Pe eff /5.3 = 10 -3 10 -2 10 -4 10 -3 10 -5 1 10 -4 10 -6 10 -5 0.1 1 • t / γ res γ γ R 2 Pe 0 = ˙ H Siebenb¨ urger, Ballauff [JPCM 27 , 194121 (2015)] D 0 yield strain γ ∗ underestimated (factor 3) yield strain γ ∗ 9 / 26

  12. FOR1394 FOR1394 FOR1394 Distorted structure MCT-ITT d = 3 MD metal melt ∗ d = 2 BD hard disks 6 4 0.2 2 0.1 y � Å � 0 0 � 2 � 0.1 � 0.2 � 4 � 6 � 2 � 4 0 2 4 6 � 6 � 6 � 4 � 2 0 2 4 6 x � Å � plastic deformation ( l = 4 ) plastic deformation MD metal melt confocal (MCT inset) 0.05 a) b) γ =0.01 γ =0.01 γ =0.35 γ =0.25 0 -0.05 δ g( θ ) -0.1 δ g( θ ) 0 -0.15 -0.4 -0.2 -0.8 0 π /4 3 π /4 π θ -0.25 0 π /4 π /2 3 π /4 0 π /4 π /2 3 π /4 π θ θ [ ∗ P. Kuhn, Th. Voigtmann; ∗∗ M. Laurati, S. Egelhaaf ; (unpublished, 2015) ] 10 / 26

  13. FOR1394 FOR1394 FOR1394 Part III 3rd Harmonic Spectrum Scaling Laws Experiment schematic model used [J. Brader, T. Voigtmann, MF, R. Larson and M. Cates, PNAS, 106 , 15186 (2009)] 11 / 26

  14. FOR1394 FOR1394 FOR1394 LAOS-model stress for applied shear rate γ ( t ) = γ 0 sin ωt ˙ stress for applied shear rate � t dt ′ G ( t, t ′ ) ˙ γ ( t ′ ) σ ( t ) = −∞ generalized shear modulus G ( t, t ′ ) = v σ Φ 2 ( t, t ′ ) � t γ ( t, t ′ ) = schematic F 12 model for strain schematic F 12 model for strain t ′ ds ˙ γ ( s ) � t � � ∂ t Φ( t, t ′ ) + Γ Φ( t, t ′ ) + t ′ d s m ( t, s, t ′ ) ∂ s Φ( s, t ′ ) = 0 memory kernel m ( t, s, t ′ ) = h ( γ ( t, s )) h ( γ ( t, t ′ )) ν 1 ( ε ) Φ( t, s ) + ν c 2 Φ 2 ( t, s ) � � strain decorrelation 1 h ( γ ) = 1 + ( γ/γ ∗ ) 2 12 / 26

  15. FOR1394 FOR1394 FOR1394 Oscillatory shear – FT Rheology dimensionless parameters: γ R 2 shear rate: Pe 0 = ˙ (bare Peclet number) H D 0 shear rate: Pe = ˙ γτ (Peclet, Weissenberg number) Pe ω = ω R 2 frequency: H D 0 frequency: De = ωτ (Deborah number) σ × R 3 stress: H k B T γ = γ 0 strain: γ ∗ Input: ǫ = φ − φ c γ ( t ) = γ 0 sin( ωt ) , ( φ packing fraction) φ c Output: � ∞ � ∞ n =1 G ′ n =1 G ′′ σ ( t ) = γ 0 n ( ω ) sin( nωt ) + γ 0 n ( ω ) cos( nωt ) Parameters: v σ , Γ , γ ∗ & η ∞ 13 / 26

  16. FOR1394 FOR1394 FOR1394 Motivation Object: ( ∝ γ 2 3rd Harmonic amplitude: I 3 = | G 3 ( ω ) | 0 ) Q 0 = 1 I 3 γ 2 I 1 0 Questions: Dependence on ω , ǫ ? I 3 related to N corr (number of correlated particles) ? Plastic decay ? Method: Taylor approximation of schematic MCT model for γ 0 → 0 14 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend