the b d b decays
play

The B D ( ) & B decays, Theoretical status thereof - PowerPoint PPT Presentation

The B D ( ) & B decays, Theoretical status thereof Marat Freytsis University of Oregon FPCP 2016 Caltech, June 6, 2016 Massive leptons in (semi-)leptonic B decays unique windows into both NP and the SM via B


  1. The B → D ( ∗ ) τ ¯ ν & B → τ ¯ ν decays, Theoretical status thereof Marat Freytsis University of Oregon FPCP 2016 — Caltech, June 6, 2016

  2. Massive leptons in (semi-)leptonic B decays unique windows into both NP and the SM via B → ( X ) τ ¯ ν decays • Standard Model ◮ B → D ( ∗ ) transitions both depend on FFs whose contribution vanishes as m ℓ → 0 ◮ B − → τ − ¯ ν only decay sensitive to f B measurable in the near future • New Physics ◮ NP often presumed to couple preferentially to 3rd generation ◮ A reason to persue B → X s ν ¯ ν and B ( s ) → ( X ) ττ for years [Hewitt, hep-ph/9506289; Grossman, Ligeti, Nardi, hep-ph/9510378 & hep-ph/9607473]] • somewhere in between (focus of most of this talk) ◮ high-precision in B → X u,c ℓ ¯ ν critical to extraction of | V ub | , | V cb | ◮ ratios are great venue for tests of lepton flavor universality (LFU) standard diclaimers: . . . general overview, but colored by my biases . . . . . . apologies to any recent work I might have missed . . . 1/ 18

  3. Plan • Introduction • Precise SM predictions ◮ complimentary, CKM-parameter-free families of ratio observables for LFU sensitivity • Quantifying NP sensitivity ◮ redundant effective operator bases for identification of UV physics • NP descriminators ◮ more differential distributions for discrimination of scenarios • Consequences and Conclusions 1/ 18

  4. B − → τ − ¯ ν Pure leptonic decays In the SM: � 2 ν ) = | V ub | 2 G 2 1 − m 2 � Γ( B − → τ − ¯ F f 2 B m 2 τ τ m B m 2 8 π B either measure | V ub | f B in data or use f B from lattice to extract | V ub | (e.g., latest lattice world average: f B = (190 . 5 ± 4 . 2) MeV [FLAG, 1310.8555] ) • only P -odd currents contribute: � 0 | ¯ b ( γ µ ) γ 5 c | B � � = 0 • new pseudoscalar couplings typically proportional to fermion mass: Γ( B − → τ − ¯ ν ) = | 1 + r NP | 2 Γ( B − → τ − ¯ ν ) SM B C P | 2 Γ( B − → τ − ¯ = | 1 + C A V + m 2 ν ) SM � b � � B � � u � e 2/ 18 � e b c 0 + B D d d d � � u b c 0 + B D d d

  5. B − → τ − ¯ ν Eliminating | V ub | dependence | V ub | drops out of ratio, but NP independent of lepton mass overall rate can still be affected/act as a bound [Hou, PRD48, 2342 (1993)] Γ( B − → τ − ¯ ν ) = Γ( B − → τ − ¯ ν ) ν ) SM Γ( B − → µ − ¯ Γ( B − → µ − ¯ ν ) SM • B − → µ − ¯ νγ correction complicates situation – no helicity suppression an alternative: compare to helicity unsuppressed decay B ( B − → τ − ¯ R π = τ B 0 ν ) ν ) = 0 . 73(13) from here ℓ = avg. of µ + e B ( ¯ B 0 → π + ℓ − ¯ τ B − [Fajfer, Kamenik, Niˇ sandˇ zi´ c, Zupan, 1206.1872] R π SM = 0 . 31(6) requires (improvable) decay constants and FFs from the lattice I have nothing else to add about B − → τ − ¯ ν , will now focus on b → cτ ¯ ν transitions 3/ 18

  6. B → D ( ∗ ) τ ¯ ν An R ( X ) reminder R ( X ) = Γ( B → Xτ ¯ ν ) Γ( B → Xℓ ¯ ν ) original goal: 2HDM H ± • deviation first seen at BaBar, later results from Belle and LHCb BaBar/Belle full datasets τ → ℓν ¯ ν to minimize lepton reco systematics 0.5 R ( D ∗ ) R(D*) R ( D ) BaBar, PRL109,101802(2012) ∆ χ 2 = 1.0 Belle, PRD92,072014(2015) BaBar 0 . 440 ± 0 . 058 ± 0 . 042 0 . 332 ± 0 . 024 ± 0 . 018 0.45 LHCb, PRL115,111803(2015) Belle, arXiv:1603.06711 Belle ( B (had) χ HFAG Average, P( 2 ) = 67% ) 0 . 375 ± 0 . 064 ± 0 . 026 0 . 293 ± 0 . 038 ± 0 . 015 0.4 SM prediction tag Belle ( B ( ℓ ) tag ) 0 . 302 ± 0 . 030 ± 0 . 011 0.35 LHCb 0 . 336 ± 0 . 027 ± 0 . 030 0.3 Exp. average 0 . 397 ± 0 . 040 ± 0 . 028 0 . 316 ± 0 . 016 ± 0 . 010 0.25 HFAG R(D), PRD92,054510(2015) SM expectation 0 . 300 ± 0 . 010 0 . 252 ± 0 . 005 R(D*), PRD85,094025(2012) Prel. Winter 2016 0.2 Belle II, 50/ab ± 0 . 010 ± 0 . 005 0.2 0.3 0.4 0.5 0.6 R(D) ◮ clean SM observables: heavy quark symmetry relates FFs Caprini, Lellouch, Neubert, hep-ph/9712417 cancellation of hadronic uncertainties, | V cb | in ratios lattice QCD for R ( D ) only [MILC, 1503.07237; HPQCD, 1505.03925] ◮ R ( D ) — 1 . 9 σ , R ( D ∗ ) — 3 . 3 σ total significance — 4 . 0 σ largest deviation from SM right now! • similar ratios before Belle II: LHCb: R ( D ) ? Λ b → Λ ( ∗ ) c τ ¯ ν ? BaBar/Belle: hadronic τ decays? 4/ 18

  7. Evading unquantified systematics in SM calculations Complementary theory predictions • inclusive B → X c τ ¯ ν rate bounded by known exclusive modes [MF, Ligeti, Ruderman, 1506.08896] ◮ form-factor independent OPE-based analysis – complementary theory systematics ◮ Corrections up to O (Λ QCD /m b , α 2 s ) R ( X c ) = 0 . 223 ± 0 . 004 theory B ( B − → X c ℓ ¯ ν ) = (10 . 92 ± 0 . 16)% inclusive ℓ data ⇒ B ( B − → X c τ ¯ ν ) = (2 . 42 ± 0 . 05)% prediction + ν ) = (2 . 41 ± 0 . 23)% ) (LEP: B ( b → Xτ • isospin-constrained fit: B ( ¯ ν ) + B ( ¯ B → D ∗ τ ¯ B → Dτ ¯ ν ) = (2 . 78 ± 0 . 25)% • estimate rate to excited B ( B → D ∗∗ τ ¯ ν ) � 0 . 2% get conservative limit: B ( B → D ∗∗ ℓ ¯ ν ) / B ( B → D ( ∗ ) ℓ ¯ ν ) ∼ 0 . 3 • deviation � 3 σ in inclusive calculation (minimal non-perturbative inputs) ◮ complementary to SM calculation of R ( D ( ∗ ) ) and LEP data 5/ 18

  8. Leveraging inclusive spectra ν ) /dq 2 predictions Precision d Γ( B → X c τ ¯ • no measurements since LEP, ◮ papers in ‘90s used m pole , no study of spectra (new data needed, in progress @ Belle) b ◮ large 1 /m 2 OPE corrections • we’ve been told Belle analysis in progress 0 . 3 0 . 025 [GeV − 1 ] B → X c τν 0 ) dΓ / d q 2 [GeV − 2 ] B → X c τν 0 . 25 0 . 02 0 . 2 0 . 015 0 . 15 0 ) dΓ / d E τ 0 . 01 LO 0 . 1 LO NLO 0 . 005 NLO NLO+1 /m 2 0 . 05 b (1 / Γ (1 / Γ NLO+1 /m 2 NLO+1 /m 2 b +SF b 0 0 3 4 5 6 7 8 9 10 11 12 1 . 8 2 2 . 2 2 . 4 2 . 6 q 2 [GeV 2 ] E τ [GeV] 1 1 B → X c τν B → X c τν 0 . 9 0 . 9 0 . 8 0 . 8 0 . 7 0 . 7 cut ) Γ( E cut ) 0 . 6 0 . 6 Γ( q 2 0 . 5 0 . 5 � 0 . 4 � 0 . 4 LO LO 0 . 3 0 . 3 NLO NLO 0 . 2 NLO+1 /m 2 0 . 2 NLO+1 /m 2 b 0 . 1 b 0 . 1 NLO+1 /m 2 b +SF 0 0 3 4 5 6 7 8 9 10 11 12 1 . 8 2 2 . 2 2 . 4 2 . 6 q 2 cut [GeV 2 ] E cut [GeV] [Ligeti, Tackmann, 1406.7013] 6/ 18

  9. leveraging inclusive spectra All τ modes. . . b → uτ ¯ ν ? • if deviation clearly established, huge motivation to study all decay modes with τ ν with a few × 10 6 B - ¯ ◮ if LEP could measure B → X c τ ¯ B pairs . . . ν with 5 × 10 10 B - ¯ ◮ . . . “surely” Belle II can measure B → X u τ ¯ B pairs • no inclusive distributions currently availible ◮ m τ � = 0 , m u = 0 – complications from different kinematic endpoints ◮ 1 . 8 GeV < E τ < 2 . 9 GeV – Subtleties with shape function; match onto u jet? [Ligeti, Luke, Tackmann, in progress] • phase space suppression is smaller in b → u : Γ( B → X u τ ¯ ν ) Γ( B → X c τ ¯ ν ) ν ) ≃ 0 . 333 ν ) ≃ 0 . 222 Γ( B → X u ℓ ¯ Γ( B → X c ℓ ¯ • can LHCb/Belle II measure b → uτ ¯ ν decay modes? ratios of τ/µ and/or c/u ? ◮ Other exclusive modes: Λ b → Λ ( c ) τ ¯ ν ? B → πτ ¯ ν ? B → ρτ ¯ ν ? 7/ 18

  10. Plan • Introduction • Precise SM predictions • Quantifying NP sensitivity • NP descriminators • Consequences and Conclusions 7/ 18

  11. Redundant four-fermion operator analysis • Fits to different fermion orderings convenient to understand allowed mediator Operator Fierz identity Allowed Current δ L int q L τ γ µ q L + g ℓ ¯ τγ µ P L ν ) ℓ L τ γ µ ℓ L ) W ′ O V L (¯ cγ µ P L b ) (¯ ( 1 , 3 ) 0 ( g q ¯ µ τγ µ P L ν ) O V R (¯ cγ µ P R b ) (¯ � O S R (¯ cP R b ) (¯ τP L ν ) q L u R iτ 2 φ † + λ ℓ ¯ ( 1 , 2 ) 1 / 2 ( λ d ¯ q L d R φ + λ u ¯ ℓ L e R φ ) O S L (¯ cP L b ) (¯ τP L ν ) cσ µν P L b ) (¯ O T (¯ τσ µν P L ν ) q L τ γ µ ℓ L U µ � ( 3 , 3 ) 2 / 3 λ ¯ O ′ cγ µ P L ν ) (¯ τγ µ P L b ) (¯ ↔ O V L V L � q L γ µ ℓ L + ˜ λ ¯ d R γ µ e R ) U µ ( 3 , 1 ) 2 / 3 ( λ ¯ O ′ cγ µ P L ν ) (¯ τγ µ P R b ) (¯ ↔ − 2 O S R V R O ′ − 1 (¯ τP R b ) (¯ cP L ν ) ↔ 2 O V R S R u R ℓ L + ˜ O ′ − 1 2 O S L − 1 (¯ τP L b ) (¯ cP L ν ) ↔ 8 O T ( 3 , 2 ) 7 / 6 ( λ ¯ λ ¯ q L iτ 2 e R ) R S L O ′ τσ µν P L b ) (¯ − 6 O S L + 1 (¯ cσ µν P L ν ) ↔ 2 O T T τγ µ P L c c ) (¯ O ′′ b c γ µ P L ν ) (¯ ↔ −O V R V L τγ µ P R c c ) (¯ ( λ ¯ R γ µ ℓ L + ˜ O ′′ b c γ µ P L ν ) (¯ d c q c L γ µ e R ) V µ (¯ ↔ − 2 O S R 3 , 2 ) 5 / 3 λ ¯ V R (¯ � q c 3 , 3 ) 1 / 3 λ ¯ L iτ 2 τ ℓ L S O ′′ τP R c c ) (¯ b c P L ν ) 1 (¯ ↔ 2 O V L S R � (¯ q c L iτ 2 ℓ L + ˜ u c 3 , 1 ) 1 / 3 ( λ ¯ λ ¯ R e R ) S τP L c c ) (¯ O ′′ b c P L ν ) − 1 2 O S L + 1 (¯ ↔ 8 O T S L O ′′ τσ µν P L c c ) (¯ b c σ µν P L ν ) − 6 O S L − 1 (¯ ↔ 2 O T T ◮ O parametrize all possible dim-6 contributions, O ′ , O ′′ related by Fierzing ◮ δ L int only for dim-6 gauge-inv. O ’s with mediator spin ≤ 1 8/ 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend