takuya akahori section of future project
play

Takuya Akahori - PowerPoint PPT Presentation

SKA Takuya Akahori Section of Future Project, Mizusawa VLBI Observatory, Japan 2018/11/24-25 Cosmic Shadow 2018 @ Ishigaki Is. 1 1. Square Kilometre


  1. SKAで探る 背景クェーサー偏波の 吸収線系による解消 と宇宙磁場研究 Takuya Akahori Section of Future Project, Mizusawa VLBI Observatory, Japan 2018/11/24-25 Cosmic Shadow 2018 @ Ishigaki Is. 1 1. Square Kilometre Array Project 2. Depolarizing Intervening Galaxies

  2. 1. SKA Project Square Kilometre Array Project 2018/11/24-25 Cosmic Shadow 2018 @ Ishigaki Is. 2

  3. 1. SKA Project PI 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 CDR AA1 AA2 AA3 AA4 18 64 256 512 LOW 8+0 64+0 120+8 133+64 MID(SKA+MKT) SKA1 Construction Bid Risk S. SKA = HQ + Commissioning IGO Survey EPA SKA1 timeline Construction 691 M€ 2017 2 telescopes Observatory Project Overview 3Tbps 2018/11/24-25 Cosmic Shadow 2018 @ Ishigaki Is. 3 Site 5Tbps Data center Site Data center Jodrell Bank MID Observatory @SA SKA1=133 Dishes(15m) + 64 Dishes(13.5m) Max. 150km SKA2=2,000 Dishes(15m) Max. 3000km LOW Observatory @ AU SKA1=512 stations (131k LPs) Max. 65km SKA2=4880 stations (1,250k LPs) Max. 300km GHQ UK 12 SKA members

  4. 1. SKA Project multi-objective project researchers share investment KSP** PI** Open Sky 4% ~ ½ of China ~ KSP 4, PI 4/yr 4% can produce many results Status of Japan (papers) and students (PhD) Band5 GC pulsars MW-VLBI ISM magnetism LOW EoR deep transients pulsar Individual ◯ institutes 25% (submitted as category-A) 2018/11/24-25 Cosmic Shadow 2018 @ Ishigaki Is. representative 4 5% cosmology 70% institutes 2. Fair Return 3. IGO SKA nations 1. Time Allocation ✕ n SKA members share 90%** of observing time n Japan’s Plan • 2-4% contribution (TBD) • NAOJ SKA promotion office Widefield & multi-mode à • An associate member n Expected Return • KSP/PI opportunities • Science/engineering promotions • Training of next generations • International presence and status

  5. 1. SKA Project ASKAP/MeerKAT/Parkes HCN CH 3 OH* HI (Galaxies) OH* Reionization, HI (Epoch of VERA/KaVA JVN MWA/LOFAR H 2 CO 43 22 15 6.7 1.6 1.4 1.0 0.3 Glycin, Alanin, Urea, ... H 2 O* Band 6 Cosmic Magnetism SKA Science Protostars Quasars Late-type Stars ?? GHz SETI AGN jets Radio galaxies Fast Radio Burst, Transients SiO* Pulsars , Magnetars Sun, Stars ICM, IGM, CGM Universe HOT Universe COLD NH 3 0.05 5c Science Objectives は正しい? 見つかる? ミッシングバリオンは 磁場と乱流の宇宙進化は? Magnetism あった? 原始に宇宙の非ガウス性は 銀河の水素量はどのくらい? Cosmology アインシュタイン重力理論 ダークガス問題は解決? 背景重力波は存在する? Pulsars 進んだ? 宇宙再電離はどのように 第一世代星の質量は? EoR(HI) 5 Cosmic Shadow 2018 @ Ishigaki Is. 2018/11/24-25 Milky Way 銀河中心より向こう側は Band 5ab FRBの起源は何? 3/4 Band 2 LOW Band 1 (GHz) Freq. 宇宙人はいる? 重力波はどこから来た? Transients どうなっている? 系外にアミノ酸は存在? 氷雪帯内の構造は? 原始惑星系円盤の Star/Planet フィードバックの歴史は? ブラックホールの成長と ジェットの構造は? AGN Book 2015 Cosmic Dawn) HI (Milky Way)

  6. 1. SKA Project 65 km 26m x 27 15mx133 + 13.5m x64 Array config. - 3本アーム 3本アーム コア + 3本アーム Max. baseline 120 km 36 km Science Specification 150 km A/T @ 0.1,1.4 GHz 0.6 5.6 2 15 Good Good Sensitivity Resolution 35m x 512 x 14, 57m x 13 31m x 48, 40m Antenna Φ・# 2018/11/24-25 Cosmic Shadow 2018 @ Ishigaki Is. 6 2010年代 2020年代 2010年代 2020年代 Telescope LOFAR SKA1-LOW JVLA SKA1-MID Site 欧州 ( 北半球 ) 豪州 ( 南半球 ) 米国 ( 北半球 ) 南アフリカ共和国 ( 南半球 ) Freq. (GHz) 0.03-0.22 0.050-0.35 0.058-50 0.35 - 15(24) A/T in 100 m 2 /K, larger is better SKA2

  7. 1. SKA Project NVSS(1) 1 2 -2 -3 -4 Taylor,TA+15 POSSUM(30) -1 SKA1* (230-450) SKA2 (5000) *4μJy/bm, 2″resolution (Johnston-Hollitt, TA+15) SKA Science Book 2015 0 10 Advantages JVLA 2018/11/28 NSPO 7 Luminosity function of linearly- polarized extragalactic sources HST SKA1 N [deg 2 ] -2 -3 -4 P [log mJy] 1000 100 1 SKA-TEL-SKO-0000818

  8. 2. DINGs Depolarizing Intervening Galaxies 2018/11/24-25 Cosmic Shadow 2018 @ Ishigaki Is. 8

  9. 2. DINGs WHIM and IGMF RM LSS Cosmic Shadow 2018 @ Ishigaki Is. TA+18a;18d TA & Ryu 10;11 QSO FRB LSS 2 1 0 -1 -2 [rad/m 2 ] 10 Mpc/h Mod. Gv.? Cosmic Baryon Budget WHIM? Galaxies, clusters, H I, Lyα, O VI Observation Std. Cosmology http://www.youtube.com/watch?v=8UzVi8MJolo Visualized by R. Kaehler 9 2018/11/24-25 = ∫n e B || dl Log 10 |RM| • Warm-hot intergalactic medium (WHIM) • In galaxy filaments. T~10 5-7 [K], n~10 -6 ‒10 -4 [cm -3 ] • Inter-galactic magnetic field (IGMF) • WHIM is most likely magnetized • RM ~ 1 rad/m 2 (local) and ~several rad/m 2 (∫dz, z=5)

  10. 1. Introduction TA+14b; TA18d Filter at ~1°-2° Bright sources? Cluster removal Use no-DING LoS Depolarization σ INT (z=2)~1 rad/m 2 High-z sources? ICM filter ERR filter ISM filter DIG filter INT filter RRM map RRM map TA+ in prep Find the signal of the IGMF 50% MgII 2018/11/24-25 Cosmic Shadow 2018 @ Ishigaki Is. 10 QSO/FRB σ INT =σ 0 (1+z) -2 σ 0 =10 rad/m 2 IGM TA+11 map ERR(ionosphere) σ ERR =1 rad/m 2 ISM TA+13 map ALL Map DING High-b is better Criteria of S X & T X

  11. 2. DINGs E-vector angles Faraday rotation Wavelength-independent depolarization no pol? 1 2 Beam Depolarization ν 1 no pol? 1 2 1 Faraday rotation NVSS =45″, ASKAP ~10″, SKA1 Band2 ~1″ ν 2 ν 2 How DP arises? depolarization 2018/11/24-25 Cosmic Shadow 2018 @ Ishigaki Is. 11 Burns 66; Sokoloff+98 Arshakian & Beck 11 Differential Faraday rotation no pol? ν 1 1 1 2 Faraday rotation Bandwidth Depolarization no pol? 2

  12. 2. DINGs I ○ 1. Polarization fraction I & P have the same spectral indices. DP reduces P , so that P/I decreases in wavelength frequency P/I RM 951 sources I∝ν α , Π∝λ β α: slope of Stokes I(ν) β: slope of Pol. Frac. Π(λ) Farnes+14a P DP × large What DP induces? RM λ-dependent quantities 2018/11/24-25 Cosmic Shadow 2018 @ Ishigaki Is. 12 2. Faraday RM P through a larger RM is more depolarized than that through a smaller RM. DP biases RM. Bernet+ 12 Solid: 6cm (4.9 GHz) Dash: 21cm (1.4 GHz) Cumulative PDF of RM Small RM? small frequency n Two λ-independent quantities becomes

  13. 2. DINGs Intervening Galaxies Dependence on z, beam, frequency Why only “flat-type” shows excess RM? Why only “steep-type” shows large DP? Question/Motivation Farnes+14b Cumulative PDF of RM 143 sources flat-type 232 sources steep-type 13 Cosmic Shadow 2018 @ Ishigaki Is. 2018/11/24-25 • Steep-type sources • α Stokes I <= -0.7, unresolved lobes? • Large DP (β<0) • No clear RM from Mg systems • Flat-type sources • α Stokes I >= -0.3, AGN cores? • Weak DP (β~0) • 6.9 ± 1.7 rad/m 2 /DING at observer • • • à Let’s do simulations!

  14. 2. DINGs 14 100 pc σ rand 30 kpc this local grid RM dispersion for σ rand Local grids = turbulent fields Models of Galaxies Global grids = coherent fields 100 pc Cosmic Shadow 2018 @ Ishigaki Is. 2018/11/24-25 at the saturation stage of isothermal compressible MHD turbulence TA+13 • Global (coherent) components • Modified NE2001 (h=1.8 kpc) • Disk(ASS/BSS) + Toroidal + X/OFF • Local (turbulent) components • Given M, β, l coh ~10-15 pc, we input data • Wind components (minor) • Just incorporated. No figures, Sorry! l coherent << box size à Gaussian à Burn’s DP n e_reg (x,y,z) B _reg (x,y,z) M rms (x,y,z) β 0 (x,y,z)

  15. 2. DINGs the pol. angle ~50% MgII system of SDSS 6 kpc (0.5), 8 kpc (1.0) 1” ~ 2 kpc (z=0.1), of the source the redshift Consider 15 Cosmic Shadow 2018 @ Ishigaki Is. 2018/11/24-25 gradient RM is from Calculation beam offset Quasars (Zhu & M’enald 13) • Source • 1″ or 10″ size • Uniform • α I = α P = -1 • 100% pol. • DING • z, i, models, • Observation • Stokes Q, U • Classical style:

  16. 2. DINGs DING’s RM 2018/11/24-25 Cosmic Shadow 2018 @ Ishigaki Is. 16 ◯: 10”, z=0.1, dx=0 kpc ○ : 1”, z=0.5, dx= 5 kpc Mean:0-200 rad/m 2 Dispersion: 5-40 rad/m 2 • RM strongly depends on MF configuration

  17. 2. DINGs PDF & Pol. fraction 2018/11/24-25 Cosmic Shadow 2018 @ Ishigaki Is. 17 1”, z=0.5, dx=5 kpc • PDF of RM within a beam does not follow the Gaussian à the resultant DP does not follow the Burn’s law

  18. 2. DINGs 2018/11/24-25 DING’s DP 10-25% ●10”(lobe=steep) RM ~ 2-8 rad/m 2 DING’s DP ~10 % ◯1”(core=flat) ● 10” ◯ 1” 18 Cosmic Shadow 2018 @ Ishigaki Is. Farnes+14ab Monte-Carlo Simulations consistent with chosen randomly shape, offset are realizations RM < 1 rad/m 2 • 100k • Inclination, B- • Results • Freq. dependent • Trends broadly

  19. 2. DINGs Bias effect on RM the observed RM does not increase by 5! 2018/11/24-25 Cosmic Shadow 2018 @ Ishigaki Is. 19 z 8 rad/m 2 60 rad/m 2 Estimated DING’s RM z 10 rad/m 2 100 rad/m 2 Intrinsic DING’s RM • If we increase the intrinsic RM by 5 times, • The “effectiveness” is 0.5 ‒ 0.9 as func. of λ and z DING

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend