taking limits of general relativity
play

Taking Limits of General Relativity Eric Bergshoeff Groningen - PowerPoint PPT Presentation

{ , e a } { , e a ; m } { , e a ; m , s Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Taking Limits of General Relativity Eric Bergshoeff Groningen University 11th Nordic String


  1. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Taking Limits of General Relativity Eric Bergshoeff Groningen University 11th Nordic String Theory Meeting 2017 Hannover, February 9 2017

  2. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : why non-relativistic gravity ?

  3. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : The Holographic Principle Gravity is not only used to describe the gravitational force!

  4. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Effective Field Theory Examples: liquid helium, cold atomic gases and quantum Hall fluids Effective Field Theory (EFT) coupled to NC gravity ⇒ universal features compare to Coriolis force Greiter, Wilczek, Witten (1989), Son (2005, 2012), Can, Laskin, Wiegmann (2014), Jensen (2014), Gromov, Abanov (2015)

  5. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Supersymmetry supersymmetry allows to apply powerful localization techniques to exactly calculate partition functions of (non-relativistic) supersymmetric field theories Pestun (2007); Festuccia, Seiberg (2011), This should also apply to the non-relativistic case !

  6. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Non-relativistic Gravity • Free-falling frames: Galilean symmetries • Earth-based frame: Newtonian gravity/Newton potential Φ( x ) • no frame-independent formulation (needs geometry!)

  7. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : General Frames • { τ µ , e µ a } a = 1 , 2 , 3; µ = 0 , 1 , 2 , 3 • { τ µ , e µ a } and m µ { τ µ , e µ a } • 3D: and m µ , s µ zero torsion : ∂ µ τ ν − ∂ ν τ µ = 0 → τ µ = ∂ µ τ τ ( x ) = t → τ µ = δ µ, 0

  8. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Take Home Message Taking the non-relativistic limit is non-trivial and not unique !

  9. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Outline { τ µ , e µ a } Galilei Gravity :

  10. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Outline { τ µ , e µ a } Galilei Gravity : { τ µ , e µ a ; m µ } Newton-Cartan Gravity :

  11. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Outline { τ µ , e µ a } Galilei Gravity : { τ µ , e µ a ; m µ } Newton-Cartan Gravity : { τ µ , e µ a ; m µ , s µ } 3D Extended Bargmann Gravity :

  12. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Outline { τ µ , e µ a } Galilei Gravity : { τ µ , e µ a ; m µ } Newton-Cartan Gravity : { τ µ , e µ a ; m µ , s µ } 3D Extended Bargmann Gravity : Final Remarks

  13. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Outline { τ µ , e µ a } Galilei Gravity : { τ µ , e µ a ; m µ } Newton-Cartan Gravity : { τ µ , e µ a ; m µ , s µ } 3D Extended Bargmann Gravity : Final Remarks

  14. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Galilei Symmetries δ t = ξ 0 • time translations : δ x i = ξ i • space translations : i = 1 , 2 , 3 δ x i = λ i j x j • spatial rotations : δ x i = λ i t • Galilean boosts : [ J ab , P c ] = − 2 δ c [ a P b ] , [ J ab , G c ] = − 2 δ c [ a G b ] , [ G a , H ] = − P a , [ J ab , J cd ] = δ c [ a J b ] d − δ a [ c J d ] b , a = 1 , 2 , 3

  15. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : ‘Gaugings’, Contractions and Non-relativistic Limits ‘gauging’ Poincare = ⇒ General relativity ⇓ ⇓ contraction non-relativistic limit ‘gauging’ Galilei = ⇒ Galilei Gravity

  16. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : In¨ on¨ u Wigner Contraction � � � � = 2 η A [ B P C ] , = 4 η [ A [ C M D ] B ] P A , M BC M AB , M CD 1 P 0 = 2 ω H , P a = P a , A = (0 , a ) M ab = J ab , M a 0 = ω G a Taking the limit ω → ∞ gives the Galilei algebra: � � P a , G b = 0

  17. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : The Galilei Limit Our starting point is the Einstein-Hilbert action in first-order formalism: 1 � B R µν AB ( M ) S = − EE µ A E ν 16 π G N E 0 Ω 0 a = ω − 1 ω a µ = ωτ µ , µ , G N = ω G G ⇒ µ 1 � b R µν ab ( J ) S Gal = − e e µ a e ν 16 π G G accidental local scaling symmetry e µ a → λ ( x ) e µ a τ µ → λ ( x ) − ( D − 3) τ µ ,

  18. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Constrained Geometry For D > 3 the e.o.m. for ω µ ab can be used to solve for ω µ ab ω µ ab = τ µ A ab + e µ c ω abc ( e , τ ) except for an antisymmetric tensor component A ab = − A ba of ω µ ab Furthermore, the e.o.m. lead to the following restriction on the geometry: τ ab ≡ e µ a e ν b ∂ [ µ τ ν ] = 0 : ( e µ a τ µ = 0) twistless torsion Using a second-order formalism the field A ab acts as a Lagrange multiplier enforcing the constraint τ ab = 0

  19. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Carroll versus Galilei Gravity Gomis, Rollier, Rosseel, ter Veldhuis + E.B. (2017) Carroll gravity is the ultra-relativistic limit of Einstein gravity The Carroll algebra is similar to but not the same as the Galilei algebra • The Carroll action contains both a R µν ab ( J ) and a R µν a ( G ) term • Symmetric Lagrange multiplier S ( ab ) and constraint K ( ab ) = 0 • relation with strong coupling limit of Henneaux ? Henneaux (1979)

  20. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Outline { τ µ , e µ a } Galilei Gravity : { τ µ , e µ a ; m µ } Newton-Cartan Gravity : { τ µ , e µ a ; m µ , s µ } 3D Extended Bargmann Gravity : Final Remarks

  21. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : Bargmann Symmetries x i ˙ x j δ ij S non-relativistic ( massive ) = m � ˙ i = 1 , 2 , 3 d τ ˙ 2 t x i = λ i ˙ Lagrangian is not invariant under Galilean boosts δ ˙ t : δ L non-relativistic ( massive ) = d d τ ( mx i λ j δ ij ) ⇒ modified Noether charge gives rise to central extension: � � P a , G b = δ ab Z

  22. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : ‘Gaugings’, Contractions and Non-relativistic Limits ‘gauging’ Poincare ⊗ U(1) = ⇒ GR plus ∂ µ M ν − ∂ ν M µ = 0 ⇓ ⇓ contraction non-relativistic limit ‘gauging’ Bargmann = ⇒ Newton-Cartan gravity

  23. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : In¨ on¨ u Wigner Contraction � � � � = 2 η A [ B P C ] , = 4 η [ A [ C M D ] B ] Z P A , M BC M AB , M CD plus 1 Z = 1 P 0 = 2 ω H + ω Z , 2 ω H − ω Z , A = (0 , a ) P a = P a , M ab = J ab , M a 0 = ω G a Taking the limit ω → ∞ gives the Bargmann algebra including Z: � � P a , G b = δ ab Z

  24. { τ µ , e µ a } { τ µ , e µ a ; m µ } { τ µ , e µ a ; m µ , s µ Galilei Gravity : Newton-Cartan Gravity : 3D Extended Bargmann Gravity : The Newton-Cartan Limit I Dautcourt (1964) express relativistic fields { E µ A , M µ } in terms of non-relativistic STEP I: fields { τ µ , e µ a , m µ } E µ 0 = ω τ µ + 1 2 ω m µ , M µ = ω τ µ − 1 2 ω m µ , E µ a = e µ a ⇒ 1 � ω − 4 � E µ a = e µ a − 2 ω 2 τ µ e ρ a m ρ + O and similar for E µ 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend