run 2 data taking run 2 data taking
play

Run 2 Data Taking Run 2 Data Taking 50ns ramp (early measurement) - PowerPoint PPT Presentation

Run 2 Data Taking Run 2 Data Taking 50ns ramp (early measurement) 25ns data taking wasnt Run 2 Data Taking 50ns ramp (early measurement) 25ns data taking wasnt Run


  1. Run 2 Data Taking

  2. Run 2 Data Taking … 50ns ramp (early measurement) 25ns data taking

  3. • – wasn’t • – • – Run 2 Data Taking … 50ns ramp (early measurement) 25ns data taking

  4. • – wasn’t • – • – Run 2 Data Taking • •

  5. • – wasn’t • – • – • Run 2 Data Taking • 17

  6. Run 2 Data Taking b • – p (6.5 TeV) – Neon : 20h b • – p (6.5 TeV) – Helium : 20h – p (6.5 TeV) – Argon : 3 days – p (2.51 TeV) – Argon : 9 h – – – Pb (6.37Z TeV) – Argon : ongoing – – – • – – – – – … – – ng – • “SMOG piquet“ every start and end of physics. • – our probes, – … – • “SMOG piquet“ every start and end of physics.

  7. “Success is a journey, not a destination.” Arthur Ashe

  8. The evolution of LHCb in 2015

  9. The evolution of the LHCb trigger in 2015

  10. ���� �������� ���� ����� � ������ � ��������� ��� ���� ���� ���� ���� ���� ������ � �� ��� �� ����� ��� � � ��� �� ����� The Challenge At 13 TeV & L = 4 × 10 32 cm -2 s -1 : VELO RICHES MUONS E/HCAL Primary vertices Trigger, p, e, K, pi particle ID Trigger and PID Impact parameter y gamma PID ~45 kHz bb pairs produced ~ 1 MHz cc pairs produced HCAL M5 ECAL M4 SPD/PS 5m M3 M2 Magnet RICH2 M1 T3 T2 T1 TT Can only readout @ 1 MHz Vertex Locator (must decide within 4 μ s) Can only store O(10kHz) (decide using ~50K cores) TRACKER P of charged particles Magnet z 5m 10m 15m 20m �� �� ��� ��� � � � � �� �� �� � � � � � �

  11. ���� �������� ���� ����� � ������ � ��������� ��� ���� ���� ���� ���� ���� ������ � �� ��� �� ����� ��� � � ��� �� ����� 40 MHz bunch crossing rate Run 1 Trigger L0 Hardware Trigger : 1 MHz readout, high E T /P T signatures At 13 TeV & L = 4 × 10 32 cm -2 s -1 : VELO RICHES MUONS 450 kHz 400 kHz 150 kHz E/HCAL h ± µ/µµ e/ γ Primary vertices Trigger, p, e, K, pi particle ID Trigger and PID Impact parameter y gamma PID ~45 kHz bb pairs produced ~ 1 MHz cc pairs produced Software High Level Trigger HCAL M5 ECAL M4 SPD/PS 5m M3 29000 Logical CPU cores M2 Magnet RICH2 M1 T3 T2 Offline reconstruction tuned to trigger T1 time constraints TT Can only readout @ 1 MHz Vertex Mixture of exclusive and inclusive Locator (must decide within 4 μ s) selection algorithms Can only store O(10kHz) 5 kHz Rate to storage (decide using ~50K cores) 2 kHz TRACKER 2 kHz 1 kHz Inclusive/ Inclusive Muon and P of charged Exclusive particles Magnet Topological DiMuon z 5m 10m 15m 20m Charm �� �� ��� ��� � � � � �� �� �� � � � � � �

  12. 2.02 B 0 D ∗ → D 0 π [1211.1230] s → µµ [1211.2674] ) [GeV/ c ] 2 Run 1 Performance 6 10 × 16 ) ) 2 2 1.2 c c Candidates / (44 MeV/ Candidates/(0.1 MeV/ 14 LHCb LHCb RS data 1 BDT>0.7 12 Fit -1 3 fb Background 10 0.8 8 0.6 6 0.4 4 2 0.2 0 5000 5500 0 2 [MeV/ ] Very clean signals 2.005 2.01 2.015 2.02 m c + − µ µ 0 M ( D + ) [GeV/ c ] 2 π s B 0 s → J / ψφ [1304.2600v3] B 0 s → D s π [1304.4741] 6 10 Large “dynamic range” ) 4500 ) 2 c Candidates / (2.5 MeV/c 4000 LHCb Candidates/(0.1 MeV/ LHCb ) 2 RS data data ) a) c − − 2 Candidates/(10 MeV/c D → φ π 3500 candidates / (15 MeV/ 4000 s fit 4000 Fit -1 LHCb Preliminary L =1.0 fb 3000 − 0 + int B → D π Data s s Background Signal B → D π − 3000 0 + 2500 s B → D K s (*) s s B → D ( π , ρ ) s s LHCb B → D π misid bkg. Good trigger efficiencies 2000 d 2000 2000 Λ → Λ π b c (*) comb bkg. B → D ( π , ρ ) 1500 d (s) Combinatorial 1000 1000 0 500 5100 5200 5300 5400 5500 5600 5700 5800 0 2 m(D π ) [MeV/c ] 5350 5400 5450 5500 5550 …. except for charm s − 0 + 2 (D π ) invariant mass [MeV/ ] c D s π 5320 5340 5360 5380 5400 5420 s - + 2 m(J/ K K ) [MeV/c ] …. but there is a lot of charm ψ 2.02 Hadronic Dimuon ) [GeV/ c ] 2 B + → J / K + Mode D → hhh B → hh ✏ (L0) [%] 27 62 93 ✏ (HLT | L0) [%] 42 85 92 ✏ (HLT × L0) [%] 11 52 84

  13. Run 2 Challenge • Energy: 8 TeV → 13 TeV + σ bb x 1.6 - σ inelastic x 1.2 - multiplicity x 1.2 • Bunch spacing: 50 ns → 25 ns + constant lumi → pileup / 2 - 1 MHz L0/readout limit: 1/20 → 1/40 - spillover

  14. Run 2 Challenge • Energy: 8 TeV → 13 TeV + σ bb x 1.6 - σ inelastic x 1.2 - multiplicity x 1.2 • Bunch spacing: 50 ns → 25 ns + constant lumi → pileup / 2 - 1 MHz L0/readout limit: 1/20 → 1/40 - spillover

  15. Run 2 Challenge • Energy: 8 TeV → 13 TeV + σ bb x 1.6 - σ inelastic x 1.2 Can we maintain - multiplicity x 1.2 improve performance • Bunch spacing: 50 ns → 25 ns under more + constant lumi → pileup / 2 challenging conditions? - 1 MHz L0/readout limit: 1/20 → 1/40 - spillover

  16. “The formulation of the problem is often more essential than its solution, which may be merely a matter of mathematical or experimental skill.” “To raise new questions, new possibilities, to regard old questions from a new angle requires creative imagination and marks real advances…” — Albert Einstein

  17. “The formulation of the problem is often more essential than its solution, which may be merely a matter of mathematical or experimental skill.” “To raise new questions, new possibilities, to regard old questions from a new angle requires creative imagination and marks real advances…” — Albert Einstein What is the problem?

  18. proton - (anti)proton cross sections Some things are not rare… 9 9 10 10 8 8 10 σ σ tot σ σ 10 7 7 10 10 Tevatron LHC 6 6 10 10 -1 5 5 10 10 -2 s σ b σ σ σ 33 cm 4 4 10 10 3 3 10 10 events / sec for L = 10 jet > √ σ σ jet (E T √ s/20) σ σ √ √ 2 2 10 10 ( nb ) ) ) ) σ W σ σ σ 1 1 10 10 σ ( ( ( σ Z σ σ σ σ σ σ 0 0 10 10 jet > 100 GeV) σ jet (E T σ σ σ -1 -1 10 10 -2 -2 10 10 σ WW σ σ σ -3 -3 10 10 σ t σ σ σ σ ZZ σ σ σ -4 -4 10 σ ggH σ σ σ 10 { σ σ σ σ WH M H =125 GeV -5 -5 10 10 σ σ σ σ VBF -6 -6 10 10 WJS2012 -7 -7 10 10 0.1 1 10 √ √ √ √ s (TeV) 8

  19. proton - (anti)proton cross sections Some things are not rare… 9 9 10 10 8 8 10 σ tot σ σ σ 10 Selected for a Viewpoint in Physics 7 7 week ending 10 10 Tevatron LHC P H Y S I C A L R E V I E W L E T T E R S PRL 110, 101802 (2013) 8 MARCH 2013 D 0 Oscillations Observation of D 0 � � 6 6 10 10 R. Aaij et al. * -1 5 5 10 10 -2 s (LHCb Collaboration) σ b σ σ σ 33 cm 4 4 (Received 6 November 2012; published 5 March 2013) 10 10 We report a measurement of the time-dependent ratio of D 0 ! K þ � � to D 0 ! K � � þ decay rates in D �þ -tagged events using 1 : 0 fb � 1 of integrated luminosity recorded by the LHCb experiment. We 3 3 10 10 events / sec for L = 10 measure the mixing parameters x 0 2 ¼ ð� 0 : 9 � 1 : 3 Þ � 10 � 4 , y 0 ¼ ð 7 : 2 � 2 : 4 Þ � 10 � 3 , and the ratio of jet > √ σ σ jet (E T √ s/20) σ σ √ √ doubly-Cabibbo-suppressed to Cabibbo-favored decay rates R D ¼ ð 3 : 52 � 0 : 15 Þ � 10 � 3 , where the 2 2 10 10 ( nb ) ) ) ) uncertainties include statistical and systematic sources. The result excludes the no-mixing hypothesis with a probability corresponding to 9.1 standard deviations and represents the first observation of D 0 � � D 0 σ σ W σ σ 1 1 10 10 σ ( ( ( oscillations from a single measurement. σ σ Z σ σ σ σ σ 0 0 10 10 jet > 100 GeV) σ σ jet (E T σ σ 3.6K events 8.4M events 6 3 10 10 × × -1 -1 10 10 10 1.2 ) ) -2 -2 LHCb 2 2 LHCb 10 10 RS data WS data c c Candidates/(0.1 MeV/ Candidates/(0.1 MeV/ σ σ σ WW σ 1 8 Fit Fit -3 -3 10 10 σ σ σ σ t Background Background 0.8 σ ZZ σ σ σ 6 -4 -4 10 σ σ σ ggH σ 10 { 0.6 σ WH σ σ σ M H =125 GeV -5 -5 4 10 10 0.4 σ VBF σ σ σ D 0 → K - π + D 0 → π - K + -6 -6 10 10 2 0.2 WJS2012 -7 -7 10 10 0.1 1 10 0 0 2.005 2.01 2.015 2.02 2.005 2.01 2.015 2.02 √ s (TeV) √ √ √ 0 0 + + 8 2 2 ( ) [GeV/ ] ( ) [GeV/ ] M D c M D c π π s s

  20. “The problem is not the problem. The problem is your attitude about the problem”

  21. Offline → Online! • Do “Online” what used to be done “Offline” • Calibrate in “Real Time” • Run offline reconstruction online • Skip offline reconstruction / skimming • Don’t store events / information that you won’t really use…

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend